skip to main content
10.1145/3369166.3369197acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbbsConference Proceedingsconference-collections
research-article

Analysis of the Method for Determining Changes in the Airways from the Spirometric Curve Evolution

Published: 13 January 2020 Publication History

Abstract

The severity of chronic respiratory diseases is evaluated performing spirometry, and particularly the forced expiration maneuvers before and after bronchodilation or challenge tests. However, no method has yet been proposed for the quantitative assessment of changes in airway mechanics following such tests. Just recently, a reduced model for forced expiration with 6 free parameters was derived and used to estimate the parameters by fitting it to a spirometric curve. The aim of this work was to perform comprehensive research on the method for quantifying the changes in airway mechanics by fitting the above model to two spirometric curves, representing the states of the respiratory system before and after bronchodilation or bronchoconstriction. To this end, a set of pairs of spirometric curves were generated from randomly drawn parameters, and 2,400 of them were used for testing purposes. The proposed method for spirometric data analysis consisted of two stages: the estimation of 6 parameters from the pre-test data using the inverse neural network and the Levenberg-Marquardt (LM) algorithm, and then the estimation of 2 parameters describing airway properties from the post-test curve with the LM procedure. The results show that this approach allows the quantification of changes in the airway mechanics with the accuracy of about 6-7 % of the parameter ranges. These outcomes encourage further analysis of the method using more reliable spirometric data.

References

[1]
Vestbo, J., and Hansen, E. F. 2001. Airway hyperrespon-siveness and COPD mortality. Thorax, 56, suppl. 2 (Sept. 2001), ii11--ii14.
[2]
Cockcroft, D. W. 2010. Direct challenge tests: airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest, 138, 2 (Aug. 2010), 18S--24S. DOI= http://doi.org/10.1378/chest.10-0088
[3]
Pellegrino, R., Viegi, G., Brusasco, V., et al. 2005. Interpretative strategies for lung function tests. Eur. Resp. J., 26, 5 (Nov. 2005), 948--968. DOI= http://doi.org/10.1183/09031936.05.00035205
[4]
Mead, J., Turner, J. M., Macklem, P. T., and Little, J. B. 1967. Significance of the relationship between lung recoil pressure and maximum expiratory flow. J. Appl. Physiol., 22, 1 (Jan. 1967), 95--108. DOI= https://doi.org/10.1152/jappl.1967.22.1.95
[5]
Pride, N. B., Permutt, S., Riley, R. L., and Bromberger-Barnea, B. 1967. Determinants of maximal expiratory flow from the lungs. J. Appl. Physiol., 23, 5 (Nov. 1967), 646--662. DOI= https://doi.org/10.1152/jappl.1967.23.5.646
[6]
Dawson, S. D. and Elliott, E. A. 1977. Wave-speed limitation on expiratory flow - a unifying concept. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol., 43, 3 (Sep. 1977), 498--515. DOI= https://doi.org/10.1152/jappl.1977.43.3.498
[7]
Shapiro, A. H. 1977. Steady flow in collapsible tubes. J. Biomech. Eng., 99, 3 (Aug. 1977), 126--147. DOI= http://doi.org/10.1115/1.3426281
[8]
Weibel, E. R. 1963. Morphometry of the Human Lung. Academic Press, New York, NY.
[9]
Lambert, R. K., Wilson, T. A., Hyatt, R. E., and Rodarte, J. R. 1982. A computational model for expiratory flow. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol., 52, 1 (Jan. 1982), 44--56. DOI= https://doi.org/10.1152/jappl.1982.52.1.44
[10]
Polak, A. G. 1998. A forward model for maximum expiration. Comput. Biol. Med., 28, 6 (Nov. 1998), 613--625. DOI= https://doi.org/10.1016/S0010-4825(98)00041-9
[11]
Polak, A.G. and Lutchen, K. R. 2003. Computational model for forced expiration from asymmetric normal lungs. Ann. Biomed. Eng., 31, 8 (Sep. 2003), 891--907. DOI= https://doi.org/10.1114/1.1588651
[12]
Hedges, K. L., Clark, A. R., and Tawhai, M. H. 2015. Comparison of generic and subject-specific models for simulation of pulmonary perfusion and forced expiration. Interface Focus, 5, 2 (Apr. 2015), 20140090. DOI= http://doi.org/10.1098/rsfs.2014.0090
[13]
Lambert, R. K. 1984. Sensitivity and specificity of the computational model for maximal expiratory flow. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol., 57, 4 (Oct. 1984), 958--970. DOI= https://doi.org/10.1152/jappl.1984.57.4.958
[14]
Lambert, R. K., Castile, R. G., and Tepper, R. S. 2004. Model of forced expiratory flows and airway geometry in infants. J. Appl. Physiol., 96, 2 (Feb. 2004), 688--692. DOI= https://doi.org/10.1152/japplphysiol.00843.2003
[15]
Lambert, R. K. and Beck, K.C. 2004. Airway area distribution from the forced expiration maneuver. J. Appl. Physiol., 97, 2 (Aug. 2004), 570--578. DOI= https://doi.org/10.1152/japplphysiol.00912.2003
[16]
Mroczka, J. and Polak, A. G. 2006. Reduced model for forced expiration and analysis of its sensitivity. IFAC Proceedings, 39, 18, 159--164. DOI= https://doi.org/10.3182/20060920-3-FR-2912.00032
[17]
Mroczka, J. and Polak, A. G. 2006. Selection of identifiable parameters from the reduced model for forced expiration. IFMBE Proceedings, 14, 664--667. DOI= https://doi.org/10.1007/978-3-540-36841-0_180
[18]
Polak, A. G., Wysoczański, D., and Mroczka, J. 2019. Solving the inverse problem in spirometry with the methods of global and local estimation. In Proceedings of the IEEE International Symposium on Medical Measurements and Applications (Istanbul, Turkey, June 26-28, 2019).
[19]
Polak, A.G., Wysoczanski, D., and Mroczka, J. 2019. Estimation of lung properties using ANN-Based inverse modeling of spirometric data. Lecture Notes in Bioinformatics, 11466, (May 2019), 561--572. DOI= https://doi.org/10.1007/978-3-030-17935-9_50
[20]
Morlion, B. and Polak, A. G. 2005. Simulation of lung function evolution after heart-lung transplantation using a numerical model. IEEE Trans. Biomed. Eng., 52, 7 (Jul. 2005), 1180--1187. DOI= http://doi.org/10.1109/TBME.2005.847563
[21]
Bogaard, J. M., Overbeek, S. E., Verbraak, A. F. M., et al. 1995. Pressure-volume analysis of the lung with an exponential and linear-exponential model in asthma and COPD. Eur. Respir. J., 8, 9 (Sep. 1995), 1525--1531. DOI= 10.1183/09031936.95.08091525
[22]
Polak, A.G. 2010. An error-minimizing approach to regularization in indirect measurements. IEEE Trans. Instrum. Measur., 59, 2 (Feb. 2010), 379--386. DOI= http://doi.org/10.1109/TIM.2009.2024364
[23]
Chávez, C. E., Alonzo-Atienza, F., and Alvarez, D. 2013. Avoiding the inverse crime in the inverse problem of electrocardiography: estimating the shape and location of cardiac ischemia. Comput. Cardiol., 40 (Sept. 2013), 687--690.
[24]
Polak, A. G., Wysoczanski, D., and Mroczka, J. 2019. Effects of homogeneous and heterogeneous changes in the lung periphery on spirometry results. Comput. Methods Programs Biomed., 173 (May 2019), 139--145. DOI= https://doi.org/10.1016/j.cmpb.2019.03.014

Cited By

View all
  • (2021)Quantitative Assessment of the Airway Response to Bronchial Tests Based on a Spirometric Curve ShiftIEEE Transactions on Biomedical Engineering10.1109/TBME.2020.300490768:3(739-746)Online publication date: Mar-2021

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICBBS '19: Proceedings of the 2019 8th International Conference on Bioinformatics and Biomedical Science
October 2019
141 pages
ISBN:9781450372510
DOI:10.1145/3369166
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

In-Cooperation

  • Beijing University of Technology
  • Harbin Inst. Technol.: Harbin Institute of Technology

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 January 2020

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Artificial Neural Network
  2. Forced Expiration Model
  3. Levenberg-marquardt Algorithm
  4. Spirometry
  5. System Identification

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

  • National Science Centre, Poland

Conference

ICBBS 2019

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Quantitative Assessment of the Airway Response to Bronchial Tests Based on a Spirometric Curve ShiftIEEE Transactions on Biomedical Engineering10.1109/TBME.2020.300490768:3(739-746)Online publication date: Mar-2021

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media