skip to main content
survey

Mind Your Mind: EEG-Based Brain-Computer Interfaces and Their Security in Cyber Space

Published: 06 February 2020 Publication History

Abstract

A brain-computer interface (BCI) system is a system that leverages brainwave information acquired by a designated brain monitoring device to interact with a computerized system. Over the past 40 years, many BCI applications have been developed in a variety of domains, from entertainment to medical field and even to computer security mechanisms. Until now, the development of BCI systems has focused on improving their accuracy, functionality, and ease of use, and not enough effort and attention has been invested in securing these systems and the sensitive data they acquire. In this article, we present the principles of brain activity data acquisition, with a special focus on EEG, and we present a taxonomy of BCI applications and domains. We also provide a comprehensive survey that covers eight possible attacks aimed at BCI systems. For each BCI application, we created an ecosystem and data and attack flow-diagram, which comprehensively describes the roles and interactions of the players associated with the BCI application and presents the most vulnerable vectors and components within its ecosystem; we identified gaps between existing security solutions and the presented attacks and vulnerabilities. Finally, we provide several concrete suggestions for improving the security of BCI systems in cyber-space.

References

[1]
H. Adeli, S. Ghosh-dastidar, and N. Dadmehr. 2008. Neuroscience letters a spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer's disease. Neurosci. Lett. 444 (2008), 190--194.
[2]
A. Ali and S. Puthusserypady. 2015. A 3D learning playground for potential attention training in ADHD: A brain-computer interface approach. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’15). IEEE, 67--70.
[3]
B. Allison, B. Graimann, and A. Gräser. 2007. Why use a BCI if you are healthy? In Proceedings of the ACE Workshop on Brain-Computer Interfaces and Games.
[4]
F. Amzica and M. Steriade. 1998. Electrophysiological correlates of sleep delta waves, Electroencephalogr. Clin. Neurophysiol. 107 (1998), 69--83.
[5]
K. K. Ang and C. Guan. 2013. Brain-computer interface in stroke rehabilitation. J. Comput. Sci. Eng. 7, 2 (2013), 139--146.
[6]
S. Anwar, T. Batool, and M. Majid. 2019. Event-related potential-based lie detection using a wearable EEG headset. In Proceedings of the 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST’19). 543--547.
[7]
S. A. M. Aris, S. Lias, and M. N. Taib. 2010. The relationship of alpha waves and theta waves in EEG during relaxation and IQ test. In Proceedings of the 2nd International Congress on Engineering Education. 69--72.
[8]
W. Arnould-Taylor. 1998. A Textbook of Anatomy and Physiology. Nelson Thornes.
[9]
M. Arns, H. Heinrich, and U. Strehl. 2013. Evaluation of neurofeedback in ADHD the long and winding road 2014. Biol. Psychol. 95 (2013), 108--115.
[10]
A. Bablani et al. 2019. An efficient concealed information test: Eeg feature extraction and ensemble classification for lie identification. Mach. Vision Appl. 30, 5 (2019), 813--832.
[11]
A. Bablani and D. Tripathi. 2018. A review on methods applied on P300-based lie detectors. In Advances in Machine Learning and Data Science. Springer, 251--257.
[12]
G. Bajwa and R. Dantu. 2016. Neurokey : Towards a new paradigm of cancelable biometrics-based key generation using electroencephalograms. Comput. Secur. 62 (2016), 95--113.
[13]
A. T. Beck, R. A. Steer, and G. K. Brown. 1996. Beck depression inventory-II. San Antonio 78, 2 (1996), 490--498.
[14]
J. A. Berg et al. 2013. Behavioral demonstration of a somatosensory neuroprosthesis. IEEE Trans. Neural Syst. Rehab. Eng. 21, 3 (2013), 500--507.
[15]
H. Berger. 1929. Über das elektrenkephalogramm des menschen. Eur. Arch. Psych. Clin. Neurosci. 87, 1 (1929), 527--570.
[16]
L. Bi, X. Fan, and Y. Liu. 2013. EEG-based brain-controlled mobile robots : A survey. IEEE Trans. Hum.-Mach. Syst. 43, 2 (2013), 161--176.
[17]
N. Birbaumer. 2006. Breaking the silence : Brain -- computer interfaces (BCI) for communication and motor control. Psychophysiology 43 (2006), 517--532.
[18]
M. V. R. Blondet, S. Laszlo, and Z. Jin. 2015. Assessment of permanence of non-volitional EEG brainwaves as a biometric. In IEEE International Conference on Identity, Security and Behavior Analysis (ISBA'15). IEEE, 1--6.
[19]
T. Bonaci et al. 2014. Securing the exocortex : A 21st century cybernetics challenge. Norbert Wiener in the 21st Century.
[20]
S. G. Boyd, A. Harden, and P. M. A. 1988. The EEG in early diagnosis of the angeiman (happy puppet) syndrome. Eur. J. Pediatr. 147, 5 (1988), 508--513.
[21]
R. L. Buckner. 2013. Perspective the cerebellum and cognitive function : 25 years of insight from anatomy and neuroimaging. Neuron 80, 3 (2013), 807--815.
[22]
T. J. Buschman. 2011. Propagating waves in human motor cortex. Front. Hum. Neurosci. 5 (2011), 1--8.
[23]
G. Buzsáki, C. A. Anastassiou, and C. Koch. 2012. The origin of extracellular fields and currents—EEG, ECoG, LFP, and spikes. Nature Publish. Group 13 (2012), 407--420.
[24]
P. Campisi et al. 2011. Brain waves-based user recognition using the " eyes closed resting conditions " protocol. In Proceedings of the IEEE International Workshop on Information Forensics and Security. 16--19.
[25]
T. Carlson and J. D. R. Millan. 2013. Brain-controlled wheelchairs: a robotic architecture. IEEE Robotics and Automation Magazine 20, 1 (2013), 65--73.
[26]
R. Caton. 1875. Electrical currents of the brain. J. Nervous Mental Dis. 2, 4 (1875), 610.
[27]
U. Chaudhary, B. Xia, S. Silvoni, L. G. Cohen, and N. Birbaumer. 2017. Brain--computer interface--based communication in the completely locked-in state. PLoS Biology 15, 1 (2017), e1002593.
[28]
C. Chayer and M. Freedman. 2001. Frontal lobe functions. Curr. Neurol. Neurosci. Rep. 1 (2001), 547--552.
[29]
K. H. Chiappa. 1997. Evoked Potentials in Clinical Medicine. Lippincott Williams 8 Wilkins.
[30]
J. Chuang, H. Nguyen, C. Wang, and B. Johnson. 2013. I think, therefore I am: Usability and security of authentication using brainwaves. In International Conference on Financial Cryptography and Data Security. Springer, Berlin, Heidelberg, 1--16.
[31]
L. L. Colgin. 2013. Mechanisms and functions of theta rhythms. Annual Review of Neuroscience 36 (2013), 295--312.
[32]
L. G. Cook and L. T. C. Mitschow. 2019. Beyond the polygraph: Deception detection and the autonomic nervous system, federal practitioner. Frontline Med. Commun. 36, 7 (2019), 316.
[33]
J. S. Damoiseaux, C. F. Beckmann, E. J. Arigita, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith, and S. A. Rombouts. 2007. Reduced resting-state brain activity in the “default network” in normal aging. Cerebral Cortex 18, 8 (2007), 1856--1864.
[34]
T. T. Dang-vu et al. 2005. Cerebral correlates of delta waves during non-REM sleep revisited. NeuroImage 28 (2005), 14--21.
[35]
J. Dauwels et al. 2010. A comparative study of synchrony measures for the early diagnosis of alzheimer's disease based on EEG. NeuroImage 49, 1 (2010), 668--693.
[36]
A. Delorme and S. Makeig. 2004. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 1 (2004), 9--21.
[37]
W. Diffie and M. E. Hellman. 1976. New directions in cryptography. IEEE Trans. Info. Theory 22, 6 (1976), 644--654.
[38]
W. H. I. M. Drinkenburg. 2015. Electroencephalography, Encyclopedia of Psychopharmacology. Springer, 592--602.
[39]
J. B. F. van Erp, F. Lotte, and M. Tangermann. 2012. Brain-computer interfaces: Beyond medical applications. Computer 45, 4 (2012), 26--34.
[40]
M. Faundez-Zanuy. 2006. Biometric security technology. IEEE Aerospace Electron. Syst. Mag. 21, 6 (2006), 15--26.
[41]
M. Ferrari and V. Quaresima. 2012. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63, 2 (2012), 921--935.
[42]
T. Fiebig, J. Krissler, and R. Hänsch. 2014. Security impact of high resolution smartphone cameras. In Proceedings of the 8th Workshop on Offensive Technologies.
[43]
L. Fogassi, P. F. Ferrari, B. Gesierich, S. Rozzi, F. Chersi, and G. Rizzolatti. 2005. Parietal lobe: from action organization to intention understanding. Science 308, 5722 (2005), 662--667.
[44]
M. Frank et al. 2017. Using EEG-based BCI devices to subliminally probe for private information. In Proceedings of the Workshop on Privacy in the Electronic Society (WPES’17). 1--12.
[45]
W. Glannon. 2014. Ethical issues with brain-computer interfaces. Front. Hum. Neurosci. 8 (2014), 1--3.
[46]
P. Gloor and A. H. Guberman. 1997. The temporal lobe 8 limbic system, canadian medical association. J. Joule 157, 11 (1997), 1597.
[47]
S. Gordon et al. 2018. Are resting state spectral power measures related to executive functions in healthy young adults ?’ Neuropsychologia 108 (2017), 61--72.
[48]
J. C. Gore. 2003. Principles and practice of functional MRI of the human brain. The Journal of Clinical Investigation 112, 1 (2003), 4--9.
[49]
L. O. Gorman. 2003. Comparing passwords, tokens, and biometrics for user authentication. Proc. IEEE 91, 12 (2003), 2019--2040.
[50]
G. Grübler and E. Hildt (Eds.). 2014. Brain-Computer-Interfaces in their ethical, social and cultural contexts. Springer Netherlands.
[51]
A. M. Graybiel et al. 1994. The basal ganglia and adaptive motor control, Science. Amer. Assoc. Adv. Sci. 265(5180), (1994), 1826--1831.
[52]
A. Greenberg. 2019. Inside the mind's eye: An international perspective on data privacy law in the age of brain-machine interfaces. Alb. LJ Sci. 8 Tech. 29 (2019), 79.
[53]
K. Groves, S. Kennett, and H. Gillmeister. 2017. Evidence for ERP biomarkers of eating disorder symptoms in women. Biol. Psychol. 123 (2017), 205--219.
[54]
Q. Gui et al. 2016. A residual feature-based replay attack detection approach for brainprint biometric systems. In Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS’16). IEEE, 1--6.
[55]
Q. Gui et al. 2019. A survey on brain biometrics. ACM Comput. Surv. 51, 6 (2019), 112.
[56]
M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa. 1993. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics 65, 2 (1993), 413.
[57]
D. C. Hammond. 2005. Neurofeedback treatment of depression and anxiety. J. Adult Dev. 12(2--3), 131--137.
[58]
A. E. Hassanien and A. A. Azar. 2015. Brain-Computer Interfaces. Springer, Switzerland.
[59]
J. D. Haynes and G. Rees. 2006. Decoding mental states from brain activity in humans. Nature Rev. Neurosci. 7, 7 (2006), 523--534.
[60]
C. R. Hema, M. P. Paulraj, and H. Kaur. 2008. Brain signatures: A modality for biometric authentication. In Proceedings of the International Conference on Electronic Design (ICED’08). 3--6.
[61]
G. Herzmann and W. Sommer. 2007. Memory-related ERP components for experimentally learned faces and names : Characteristics and parallel-test reliabilities. Psychophysiology 44, 262--276.
[62]
J. A. Hobson. 1988. The Dreaming Brain. Basic Books, New York.
[63]
S. Horndasch et al. 2012. The late positive potential as a marker of motivated attention to underweight bodies in girls with anorexia nervosa. J. Psychosom. Res. 284--286, 6, (2012), 443--447.
[64]
E. Hortal et al. 2015. SVM-based brain-machine interface for controlling a robot arm through four mental tasks. Neurocomputing 151 (2015), 116--121.
[65]
J. R. Hughes. 2008. Gamma, fast, and ultrafast waves of the brain: Their relationships with epilepsy and behavior. Epilepsy Behav. 13 (2008), 25--31.
[66]
M. Ienca and P. Haselager. 2016. Hacking the brain: brain--computer interfacing technology and the ethics of neurosecurity. Ethics and Information Technology 18, 2 (2016), 117--129.
[67]
M. Ienca, F. Jotterand, and B. S. Elger. 2018. From healthcare to warfare and reverse: How should we regulate dual-use neurotechnology? Neuron 97, 2 (2018), 269--274.
[68]
M. Inzlicht et al. 2009. Neural markers of religious conviction. Psychol. Sci. 20, 3 (2009), 385--392.
[69]
A. K. Jain, A. Ross, and S. Prabhakar. 2004. An introduction to biometric recognition. IEEE Trans. Circ. Syst. Video Technol. 14, 1 (2004), 4--20.
[70]
F. Jiang, G. C. Stecker, G. M. Boynton, and I. Fine. 2016. Early blindness results in developmental plasticity for auditory motion processing within auditory and occipital cortex. Frontiers in Human Neuroscience 10 (2016), 324.
[71]
Z. Jiang et al. 2017. Event-related theta oscillatory substrates for facilitation and interference effects of negative emotion on children's cognition. Int. J. Psychophysiol. 116 (2017), 26--31.
[72]
V. Kartsch and S. Benatti. 2017. A wearable EEG-based drowsiness detection system with blink duration and alpha waves analysis. In Proceedings of the IEEE EMBS Conference on Neural Engineering. 251--254.
[73]
A. Kassab et al. 2015. Functional near-infrared spectroscopy caps for brain activity monitoring: A review. Appl. Optics 54, 3 (2015), 576--586.
[74]
T. Kaufmann et al. 2011. Flashing characters with famous faces improves ERP-based brain--computer. J. Neural Eng. 8, 5.
[75]
T. Kaufmann, A. Herweg, and A. Kübler. 2014. Toward brain-computer interface-based wheelchair control utilizing tactually evoked event-related potentials. J. Neuroengineer. Rehab. 1--17.
[76]
B. Kerous, F. Skola, and F. Liarokapis. 2017. EEG-based BCI and video games: A progress report. Virtual Reality. Springer, London, 1253.
[77]
K. T. Kim and S. W. Lee. 2017. Towards an EEG-based intelligent wheelchair driving system with vibro-tactile stimuli. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC’16). 2382--2385.
[78]
W. Klimesch. 1999. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 29, 169--195.
[79]
G. G. Knyazev. 2012. Neuroscience and biobehavioral reviews EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci. Biobehav. Rev. 36, 1 (2012), 677--695.
[80]
T. Koike-Akino et al. 2016. High-accuracy user identification using EEG biometrics. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS’16). 854--858.
[81]
B. Koo et al. 2015. Immersive BCI with SSVEP in VR head-mounted display. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’15). IEEE, 1103--1106.
[82]
I. S. Kotchetkov et al. 2010. Brain-computer interfaces: Military, neurosurgical, and ethical perspective. J. Neurosurg. 28, (2010), 1--6.
[83]
D. J. Krusienski et al. 2008. Toward enhanced P300 speller performance. J. Neurosci. Methods 167, 15--21.
[84]
A. Kubler and N. Birbaumer. 2008. Brain--computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clin. Neurophysiol. 119, 11 (2008), 2658--2666.
[85]
J. Lange et al. 2017. Side-channel attacks against the human brain: The PIN code case study. In Proceedings of the International Workshop on Constructive Side-Channel Analysis and Secure Design (COSADE’17). 171--189.
[86]
N. Lee, A. J. Broderick, and L. Chamberlain. 2007. What is “neuromarketing” ? A discussion and agenda for future research. Int. J. Psychophysiol. 63 (2004), 199--204.
[87]
Q. Li. 2015. Brain-computer interface applications: Security and privacy challenges. In Proceedings of SPiCy’15, 663--666.
[88]
Z. Li et al. 2017. Human cooperative wheelchair with brain -- machine interaction based on shared control strategy. IEEE/ASME Trans. Mechatron. 22, 1 (2017), 185--195.
[89]
S. Liu and M. Silverman. 2001. A Practical Guide to Biometric Security Technology. IEEE.
[90]
S. J. Luck. 2012. Event-related potentials. In Handbook of Research Methods in Psychology. APA, vol. 1, 1--18.
[91]
M. Lui et al. 2018. Suppression of 12-Hz SSVEPs when viewing familiar faces: An electrophysiological index to detect recognition. Int. J. Psychophysiol. 133 (2018), 159--168.
[92]
M. E. Lund, H. V. Christiensen, H. A. Caltenco, E. R. Lontis, B. Bentsen, and L. N. A. Struijk. 2010. Inductive tongue control of powered wheelchairs. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE, 3361--3364.
[93]
G. Lukács et al. 2019. Item roles explored in a modified P300-based CTP concealed information test. In Applied Psychophysiology and Biofeedback. Springer, 1--15.
[94]
E. Maby et al. 2012. BCI could make old two-player games even more fun: A proof of concept with connect four. Advances in Human-Computer Interaction. ACM.
[95]
B. O. Mainsah et al. 2014. Utilizing a language model to improve online dynamic data collection in P300 spellers. IEEE Trans. Neural Syst. Rehab. Eng. 22, 4 (2014), 837--846.
[96]
B. O. Mainsah et al. 2015. stopping towards more practical use: An ALS study increasing BCI communication rates with dynamic stopping towards more practical use: An ALS study. J. Neural Engineer. 12, 1
[97]
E. Maiorana et al. 2013. On the vulnerability of an EEG-based biometric system to hill-climbing attacks algorithms comparison and possible countermeasures. In Proceedings of the IEEE 6th International Conference on Biometrics: Theory, Applications and Systems (BTAS’13). IEEE, 1--6.
[98]
E. Maiorana et al. 2015. Hill-climbing attacks on multibiometrics recognition systems. IEEE Trans. Info. Forensics Secur. 10, 5 (2015), 900--915.
[99]
I. Martinovic, D. Davies, M. Frank, D. Perito, T. Ros, and D. Song. 2012. On the feasibility of side-channel attacks with brain-computer interfaces. In Presented as part of the 21st USENIX Security Symposium (USENIX Security'12). 143--158.
[100]
D. P. Mcmullen et al. 2014. Demonstration of a semi-autonomous hybrid brain -- machine interface using human intracranial EEG, Eye tracking, and computer vision to control a robotic upper limb prosthetic, IEEE Trans. Neural Syst. Rehab. Eng. 22, 4 (2014), 784--796.
[101]
A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. 1996. Handbook of Applied Cryptography. CRC Press.
[102]
J. Meng et al. 2016. Noninvasive electroencephalogram-based control of a robotic arm for reach and grasp tasks. Sci. Rep. 6 (Nov. 2016), 1--15.
[103]
R. Middleton IV, C. Howell, S. Peebles, and K. Powell. 2011. Unsafe harbor: An analysis of local Government use of harboring ordinances to restrict illegal aliens' access to housing. Journal of Immigrant 8 Refugee Studies 9, 2 (2011), 127--138.
[104]
R. Milla. 2007. Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 29, 4 (2007), 743--748.
[105]
I. Nakanishi, S. Baba, and C. Miyamoto. 2009. EEG-based biometric authentication using new spectral features. In Proceedings of the Symposium on Intelligent Signal Processing and Communication Systems. 651--654.
[106]
N. Naseer and K. S. Hong. 2015. fNIRS-based brain-computer interfaces: A review. Frontiers in Human Neuroscience 9, 3 (2015).
[107]
K. L. Nikos. 2008. What we can do and what we cannot do with fMRI. Nature Rev. Neurosci. 453, 869--878.
[108]
M. Nishimori, T. Saitoh, and R. Konishi. 2007. Voice controlled intelligent wheelchair. In Proceedings of the SICE Annual Conference. 336--340.
[109]
O. Ossmy et al. 2011. Minddesktop-computer accessibility for severely handicapped. In Proceedings of the International Conference on Enterprise Information Systems (ICEIS’11). Vol. 4, 316--320.
[110]
D. Panchal. 2013. Bio-Crypto System. Doctoral Dissertation. Indian Institute of Technology, Kharagpur.
[111]
J. Patel, S. Fujisawa, and A. Bere. 2012. Report traveling theta waves along the entire septotemporal axis of the hippocampus. Neuron 75, 410--417.
[112]
G. Pfurtscheller. 1979. Central beta rhythm during sensorimotor activities in man. Electroencephalogr. Clin. Neurophysiol. 1, 51 (1979), 253--264.
[113]
G. Pfurtscheller et al. 2006. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31, 153--159.
[114]
G. Pfurtscheller, R. Scherer, and C. Neuper. 2008. Rehabilitation with brain-computer interface systems. Computer 41, 10 (2008), 58--65.
[115]
S. Plesnick, D. Repice, and P. Loughnane. 2014. Eye-controlled wheelchair. In Proceedings of the IEEE Canada International Humanitarian Technology Conference (IHTC’14).
[116]
G. Plourde. 2006. Auditory evoked potentials. Best Pract. Res. Clin. Anaesthesiol. 20, 1 (2006), 129--139.
[117]
A. Pótári et al. 2017. NeuroImage age-related changes in sleep EEG are attenuated in highly intelligent individuals. NeuroImage 146(2016), 554--560.
[118]
G. Prasad et al. 2009. Using motor imagery-based brain-computer interface for post-stroke rehabilitation. In Proceedings of the IEEE International Conf erence on Neural Engineering. 258--262.
[119]
S. Qiu et al. 2016. Event-related beta EEG changes during active, passive movement and functional electrical stimulation of the lower limb. IEEE Trans. Neural Syst. Rehab. Eng. 24, 2 (2016), 283--290.
[120]
B. Quintela and S. Cunha. 2010. Biometric authentication using brain responses to visual stimuli. 103--112.
[121]
J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, and T. M. Vaughan. 2000. Brain-computer interface technology: a review of the first international meeting. IEEE Transactions on Rehabilitation Engineering 8, 2 (2000), 164--173.
[122]
G. N. Rajendra and B. Rajneesh. 2011. A new approach for data encryption using genetic algorithms and brain mu waves. J. Sci. Engineer. Res. 2, 5 (2011), 2--5.
[123]
K. V. R. Ravi, R. Palaniappan, and C. Eswaran. 2007. Data encryption using event-related brain signals. In Proceedings of the International Conference on Computational Intelligence and Multimedia Applications. Vol. 1, 540--544.
[124]
N. Rawat, Y. Shin, and I. Balasingham. 2016. EEG-based image encryption via quantum walks. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS’16). 231--234.
[125]
A. Riera, A. Soria-Frisch, M. Caparrini, C. Grau, and G. Ruffini. 2007. Unobtrusive biometric system based on electroencephalogram analysis. EURASIP Journal on Advances in Signal Processing 2008, 1 (2007), 143728.
[126]
D. A. Rohani and S. Puthusserypady. 2015. BCI inside a virtual reality classroom: a potential training tool for attention. EPJ Nonlinear Biomedical Physics 3, 1 (2015), 12.
[127]
E. Saxby and E. G. Peniston. 1995. Alpha--theta brainwave neurofeedback training: An effective treatment for male and female alcoholics with depressive symptoms. Journal of Clinical Psychology 51, 5 (1995), 685--693.
[128]
D. L. Schacter. 1977. Eeg theta waves and psychological phenomena: A review and analysis. Biol. Psychol. 5, 47--82.
[129]
R. Scherer and G. Pfurtscheller. 2005. EEG-based neuroprosthesis control : A step towards clinical practice. Neurosci. Lett. 382(1--2), 169--174.
[130]
J. D. Schmahmann. 2019. Neuroscience letters on the cerebellum and cognition. Neurosci. Lett. 688 (2018), 62--75.
[131]
H. A. Shedeed. 2011. A new method for person identification in a biometric security system based on brain EEG signal processing. In Proceedings of the IEEE Congress on Information and Communication Technologies. 1205--1210.
[132]
G. J. Simmons and G. J. Simmons. 1979. Symmetric and asymmetric encryption. ACM Comput. Surveys 11, 4 (1979), 305--330.
[133]
D. H. Smith et al. 2000. Immediate coma following inertial brain injury dependent on axonal damage in the brainstem. J. Neurosurg. 93, 2 (2000), 315--322.
[134]
N. Soffer-Dudek, D. Todder, L. Shelef, I. Deutsch, and S. Gordon. 2019. A neural correlate for common trait dissociation: Decreased EEG connectivity is related to dissociative absorption. J. Personal. 87, 2 (2019), 295--309.
[135]
W. Speier et al. 2012. Natural language processing with dynamic classification improves P300 speller accuracy and bit rate. J. Neural Engineer. 9, 1 (2012)
[136]
W. Speier, C. Arnold, and N. Pouratian. 2013. Evaluating true BCI communication rate through mutual information and language models. PLoS ONE 8, 10 (2013)
[137]
L. R. Squire. 1992. Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 2 (1992), 195.
[138]
L. R. Squire and S. Zola-Morgan. 1991. The Medial Temporal Lobe Memory System. Science 253, 5026 (1991), 1380--1386.
[139]
A. Steck and B. Steck. 2016. Dreams and the dreaming brain. In Brain and Mind. Springer, 219--240.
[140]
A. Stein et al. 2018. EEG-triggered dynamic difficulty adjustment for multiplayer games. Entertain. Comput. 14--25.
[141]
F. Su, H. Zhou, and Z. Feng. 2012. A biometric-based covert warning system using EEG. In 2012 5th IAPR International Conference on Biometrics (ICB). IEEE, 342--347.
[142]
G. A. Tabot. 2014. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc. Natl. Acad. Sci. U.S.A. 111, 2 (2014), 18279--18284.
[143]
W. O. Tatum, R. C. Ly, M. Sluzewska-Niedzwiedz, and J. J. Shih. 2013. Lambda waves and occipital generators. Clinical EEG and Neuroscience 44, 4 (2013), 307--312.
[144]
M. Teplan. 2002. Fundamentals of EEG measurement. Measure. Sci, Rev. 2, (2002), 1--11.
[145]
K. P. Thomas and A. P. Vinod. 2018. EEG-based biometric authentication using gamma band power during rest state. Circuits, Systems, and Signal Processing 37, 1 (2018), 277--289.
[146]
A. Tiwary et al. 2018. Internet of things (IoT): Research, architectures and applications. Int. J. Future Rev. Comput. Sci. Commun. Engineer. 4 (2018), 2454--4248.
[147]
P. Tsaytler, H. P. Harding, D. Ron, and A. Bertolotti. 2011. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332, 6025 (2011), 91--94.
[148]
H. Tuokka. 2017. Theta Rhythm Production and Creativity Through Simultaneous Sensory Stimulation.
[149]
A. Umair, U. Ashfaq, and M. G. Khan. 2017. Recent trends, applications, and challenges of brain-computer interfacing (BCI). International Journal of Intelligent Systems and Applications 9, 2 (2017), 58.
[150]
G. A. M. Vasiljevic and L. C. de Miranda. 2019. Brain--computer interface games based on consumer-grade EEG Devices: A systematic literature review. International Journal of Human--Computer Interaction (2019), 1--38.
[151]
J. Vidal. 1973. Toward Direct Brain-Computer Communication. Annual review of Biophysics and Bioengineering 2, 1 (1973), 157--180.
[152]
F. Vogel. 1970. The genetic basis of the normal human electroencephalogram (EEG). Humangenetik 10, 2 (1970), 91--114.
[153]
F. Vogel et al. 1979. The electroencephalogram (EEG) as a research tool in human behavior genetics: Psychological examinations in healthy males with various inherited EEG variants: I. Rationale of the study. Mater. Methods Heritab. Test Param. Hum. Genet. 47, 1 (1979), 1--45.
[154]
K. Wahlstrom, B. Fairweather, and H. Ashman. 2017. Privacy and brain-computer interfaces: Method and interim findings. ORBIT Journal 1, 2 (2017).
[155]
M. A. Whittington et al. 2010. Multiple origins of the cortical gamma rhythm. Dev. Neurobiol. 71 (2010), 92--106.
[156]
C. M. Wong et al. 2015. A multi-channel SSVEP-based BCI for computer games with analogue control. In Proceedings of the IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA’15). IEEE, 1--6.
[157]
D. Wu, C. Li, and D. Yao. 2009. Scale-free music of the brain. PLoS ONE 4, 6 (2009), 4--11.
[158]
Y. Xu et al. 2016. Frequency of a false positive diagnosis of epilepsy: A systematic review of observational studies, Seizure 41 (2016), 167--174.
[159]
E. Yin et al. 2013. A novel hybrid BCI speller based on the incorporation of SSVEP into the P300. J. Neural Eng. 10, 2 (2013)
[160]
H. Zhang and J. Jacobs. 2015. Traveling theta waves in the human hippocampus. J. Neurosci. 35, 36 (2015), 12477--12487.
[161]
K. Ziegler-graham et al. 2008. Estimating the prevalence of limb loss in the united states : 2005 to 2050’. Arch. Phys. Med. Rehab. 89 (2008), 422--429.
[162]
R. Moskovitch, N. Nissim, and Y. Elovici. 2007. Malicious code detection and acquisition using active learning. In Proceedings of the Conference on IEEE Intelligence and Security Informatics. IEEE, 371.
[163]
R. Moskovitch, N. Nissim, and Y. Elovici. 2008. Acquisition of malicious code using active learning. In Proceedings of the 2nd International Workshop on Privacy, Security, and Trust in KDD.
[164]
N. Nissim, M. R. Boland, N. P. Tatonetti, Y. Elovici, G. Hripcsak, Y. Shahar, and R. Moskovitch. 2016. Improving condition severity classification with an efficient active learning-based framework. J. Biomed. Info. 61 (2016), 44--54.
[165]
N. Nissim, Y. Shahar, Y. Elovici, G. Hripcsak, and R. Moskovitch. 2017. Inter-labeler and intra-labeler variability of condition severity classification models using active and passive learning methods. Artific. Intell. Med. 81 (2017), 12--32.
[166]
E. Maiorana, G. E. Hine, and P. Campisi. 2015. Hill-climbing attacks on multibiometrics recognition systems. IEEE Trans. Info. Forensic Sec. 10, 5 (2015), 900--915.
[167]
E. Maiorana, G. E. Hine, D. La Rocca, and P. Campisi. 2013. On the vulnerability of an EEG-based biometric system to hill-climbing attacks algorithms’ comparison and possible countermeasures. In Proceedings of the IEEE 6th International Conference on Biometrics: Theory, Applications 8 Systems (BTAS’13). 1--6.
[168]
Q. Gui, W. Yang, Z. Jin, M. V. Ruiz-Blondet, and S. Laszlo. 2016. A residual feature-based replay attack detection approach for brainprint biometric systems. In Proceedings of the 8th IEEE International Workshop on Information, Forensics, and Security (WIFS’16). IEEE 1--6.
[169]
F. Su, H. Zhou, Z. Feng, and J. Ma. 2012. A biometric-based covert warning system using EEG. In Proceedings of the 5th IAPR International Conference on Biometrics (ICB’12). IEEE 342--347.
[170]
A. Zúquete, B. Quintela, and J. P. da Silva Cunha. 2010. Biometric Authentication using brain responses to visual stimuli. In Biosignals. 103--112.

Cited By

View all
  • (2025)A Survey on Brain-Computer Interface-Inspired Communications: Opportunities and ChallengesIEEE Communications Surveys & Tutorials10.1109/COMST.2024.339684727:1(108-139)Online publication date: Feb-2025
  • (2025)Designing an online BCI forum: insights from researchers and end-usersJournal of Neural Engineering10.1088/1741-2552/adaf5722:1(016051)Online publication date: 20-Feb-2025
  • (2025)Brain–computer interfaces for security and authenticationArtificial Intelligence Applications for Brain–Computer Interfaces10.1016/B978-0-443-33414-6.00014-9(205-225)Online publication date: 2025
  • Show More Cited By

Index Terms

  1. Mind Your Mind: EEG-Based Brain-Computer Interfaces and Their Security in Cyber Space

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Computing Surveys
    ACM Computing Surveys  Volume 53, Issue 1
    January 2021
    781 pages
    ISSN:0360-0300
    EISSN:1557-7341
    DOI:10.1145/3382040
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 06 February 2020
    Accepted: 01 November 2019
    Revised: 01 November 2019
    Received: 01 June 2019
    Published in CSUR Volume 53, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Brain-computer interface
    2. EEG
    3. attack
    4. cyber space
    5. detection
    6. privacy
    7. security

    Qualifiers

    • Survey
    • Survey
    • Refereed

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)212
    • Downloads (Last 6 weeks)20
    Reflects downloads up to 02 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)A Survey on Brain-Computer Interface-Inspired Communications: Opportunities and ChallengesIEEE Communications Surveys & Tutorials10.1109/COMST.2024.339684727:1(108-139)Online publication date: Feb-2025
    • (2025)Designing an online BCI forum: insights from researchers and end-usersJournal of Neural Engineering10.1088/1741-2552/adaf5722:1(016051)Online publication date: 20-Feb-2025
    • (2025)Brain–computer interfaces for security and authenticationArtificial Intelligence Applications for Brain–Computer Interfaces10.1016/B978-0-443-33414-6.00014-9(205-225)Online publication date: 2025
    • (2024)EEG Data Augmentation Method for Identity Recognition Based on Spatial–Temporal Generating Adversarial NetworkElectronics10.3390/electronics1321431013:21(4310)Online publication date: 2-Nov-2024
    • (2024)EEGGAN-Net: enhancing EEG signal classification through data augmentationFrontiers in Human Neuroscience10.3389/fnhum.2024.143008618Online publication date: 21-Jun-2024
    • (2024)Position: On Potential Malware & New Attack Vectors for Internet-of-Brains (IoB)2024 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)10.1109/EuroSPW61312.2024.00066(545-553)Online publication date: 8-Jul-2024
    • (2024)Understanding construction workers’ cognitive processes under risky scenarios through electroencephalographyAutomation in Construction10.1016/j.autcon.2024.105674166(105674)Online publication date: Oct-2024
    • (2024)Impact of neural cyberattacks on a realistic neuronal topology from the primary visual cortex of miceWireless Networks10.1007/s11276-023-03649-230:9(7391-7405)Online publication date: 1-Dec-2024
    • (2024)Speech emotion recognition systems and their security aspectsArtificial Intelligence Review10.1007/s10462-024-10760-z57:6Online publication date: 21-May-2024
    • (2024)Enhancing User Authentication Through EEG Based P300 Speller ResponseAdvances in Soft Computing10.1007/978-3-031-75543-9_10(124-141)Online publication date: 21-Oct-2024
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media