skip to main content
10.1145/3373207.3404058acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

On the bit complexity of finding points in connected components of a smooth real hypersurface

Published:27 July 2020Publication History

ABSTRACT

We present a full analysis of the bit complexity of an efficient algorithm for the computation of at least one point in each connected component of a smooth real hypersurface. This is a basic and important operation in semi-algebraic geometry: it gives an upper bound on the number of connected components of a real hypersurface, and is also used in many higher level algorithms.

Our starting point is an algorithm by Safey El Din and Schost (Polar varieties and computation of one point in each connected component of a smooth real algebraic set, ISSAC'03). This algorithm uses random changes of variables that are proved to generically ensure certain desirable geometric properties. The cost of the algorithm was given in an algebraic complexity model; the analysis of the bit complexity and the error probability were left for future work.

Our paper answers these questions. Our main contribution is a quantitative analysis of several genericity statements, such as Thom's weak transversality theorem or Noether normalization properties for polar varieties.

References

  1. M. Alonso, E. Becker, M.-F. Roy, and T. Wörmann. 1996. Zeroes, multiplicities and idempotents for zerodimensional systems. In Algorithms in algebraic geometry and applications. Proceedings of MEGA'94 (Progress in Mathematics), Vol. 142. Birkhaüser, 1--15.Google ScholarGoogle Scholar
  2. B. Bank, M. Giusti, and J. Heintz. 2014. Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity. Math. Comp. 83 (2014), 873--897.Google ScholarGoogle ScholarCross RefCross Ref
  3. B. Bank, M. Giusti, J. Heintz, L. Lehmann, and L.-M. Pardo. 2012. Algorithms of Intrinsic Complexity for Point Searching in Compact Real Singular Hypersurfaces. Foundations of Computational Mathematics 12 (2012), 75--122.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. B. Bank, M. Giusti, J. Heintz, and G. Mbakop. 1997. Polar Varieties and Efficient Real Equation Solving: The Hypersurface Case. Journal of Complexity 13, 1 (1997), 5--27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. B. Bank, M. Giusti, J. Heintz, and G.-M. Mbakop. 2001. Polar varieties and efficient real elimination. Mathematische Zeitschrift 238, 1 (2001), 115--144.Google ScholarGoogle ScholarCross RefCross Ref
  6. B. Bank, M. Giusti, J. Heintz, and L.-M. Pardo. 2005. Generalized polar varieties: geometry and algorithms. Journal of Complexity 21, 4 (2005), 377--412.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Basu, R. Pollack, and M.-F. Roy. 2003. Algorithms in Real Algebraic Geometry. Algorithms and computation in mathematics, Vol. 10. Springer-Verlag.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. W. Baur and V. Strassen. 1983. The complexity of partial derivatives. Theoret. Comput. Sci. 22, 3 (1983), 317--330.Google ScholarGoogle ScholarCross RefCross Ref
  9. J. Bochnak, M. Coste, and M.-F. Roy. 1998. Real algebraic geometry. Springer-Verlag.Google ScholarGoogle Scholar
  10. C. D'Andrea, T. Krick, and M. Sombra. 2013. Heights of varieties in muliprojective spaces and arithmetic Nullstellensatz. Annales scientifiques de l'École Normale Supérieure 46, 4 (Aug 2013), 549--627.Google ScholarGoogle Scholar
  11. M. Demazure. 2000. Bifurcations and catastrophes: geometry of solutions to nonlinear problems. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  12. D. Eisenbud. 1995. Commutative Algebra with a View Toward Algebraic Geometry (1st. ed.). Graduate Texts in Mathematics, Vol. 150. Springer-Verlag, New York.Google ScholarGoogle Scholar
  13. P. Gianni and T. Mora. 1989. Algebraic solution of systems of polynomial equations using Groebner bases. In AAECC (LNCS), Vol. 356. Springer, 247--257.Google ScholarGoogle Scholar
  14. M. Giusti, K. Hägele, J. Heintz, J.-E. Morais, J.-L. Montaña, and L.-M. Pardo. 1997. Lower bounds for diophantine approximation. J. of Pure and Applied Algebra 117/118 (1997), 277--317.Google ScholarGoogle Scholar
  15. M. Giusti, J. Heintz, J.-E. Morais, J. Morgenstern, and L.-M. Pardo. 1998. Straightline programs in geometric elimination theory. Journal of Pure and Applied Algebra 124 (1998), 101--146.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Giusti, J. Heintz, J.-E. Morais, and L.-M. Pardo. 1995. When polynomial equation systems can be solved fast?. In AAECC-11 (LNCS), Vol. 948. Springer, 205--231.Google ScholarGoogle Scholar
  17. M. Giusti, J. Heintz, and J. Sabia. 1993. On the efficiency of effective Nullstellensätze. Computational Complexity 3 (1993), 56--95.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. Grigoriev and N. Vorobjov. 1988. Solving Systems of Polynomial Inequalities in Subexponential Time. J. Symbolic Comput. 5 (1988), 37--64.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Heintz. 1983. Definability and fast quantifier elimination in algebraically closed fields. Theoretical Computer Science 24, 3 (May 1983), 239--277.Google ScholarGoogle ScholarCross RefCross Ref
  20. G. Jeronimo and J. Sabia. 2002. Effective equidimensional decomposition of affine varieties. Journal of Pure and Applied Algebra 169 (2002), 229--248.Google ScholarGoogle ScholarCross RefCross Ref
  21. T. Krick, L.-M. Pardo, and M. Sombra. 2001. Sharp estimates for the arithmetic Nullstellensatz. Duke Mathematical Journal 109, 3 (2001), 521--598.Google ScholarGoogle ScholarCross RefCross Ref
  22. L. Kronecker. 1882. Grundzüge einer arithmetischen Theorie der algebraischen Grössen. Journal für die reine und angewandte Mathematik 92 (1882), 1--122.Google ScholarGoogle Scholar
  23. F. Macaulay. 1916. The Algebraic Theory of Modular Systems. Cambridge University Press.Google ScholarGoogle Scholar
  24. D. Mumford. 1976. Algebraic Geometry 1 : complex algebraic varieties. Springer.Google ScholarGoogle Scholar
  25. R. Piene. 1978. Polar classes of singular varieties. Annales Scientifiques de l'École Normale Supérieure 11, 2 (1978), 247--276.Google ScholarGoogle Scholar
  26. F. Rouillier. 1999. Solving zero-dimensional systems through the Rational Univariate Representation. Applicable Algebra in Engineering, Communication and Computing 9, 5 (1999), 433--461.Google ScholarGoogle ScholarCross RefCross Ref
  27. É. Schost. 2003. Computing Parametric Geometric Resolutions. Applicable Algebra in Engineering, Communication and Computing 5 (2003), 349--393.Google ScholarGoogle Scholar
  28. É. Schost and M. Safey El Din. 2003. Polar Varieties and Computation of one Point in each Connected Component of a Smooth Real Algebraic Set. In ISSAC'03. ACM, 224--231.Google ScholarGoogle Scholar
  29. É. Schost and M. Safey El Din. 2011. A baby steps/giant steps probabilistic algorithm for computing roadmaps in smooth bounded real hypersurface. Discrete and Computational Geometry 5 (2011), 181--220.Google ScholarGoogle ScholarCross RefCross Ref
  30. É. Schost and M. Safey El Din. 2017. A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets. J. ACM 63, 6 (Feb. 2017), 1--48.Google ScholarGoogle Scholar
  31. É. Schost and M. Safey El Din. 2018. Bit complexity for multi-homogeneous system solving. Application to polynomial minimization. Journal of Symbolic Computation 87 (May 2018), 176--206.Google ScholarGoogle ScholarCross RefCross Ref
  32. É. Schost, B. Saugata, M-F Roy, and M. Safey El Din. 2014. A baby step-giant step roadmap algorithm for general algebraic sets,. Foundations of Computational Mathematics 14 (2014), 1117--1172.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. I. Shafarevich. 1977. Basic Algebraic Geometry 1. Springer Verlag.Google ScholarGoogle Scholar
  34. B. Teissier. 1988. Quelques points de l'histoire des variétés polaires, de Poncelet à nos jours. In Sém. Annales Univ. Blaise Pascal, Vol. 4.Google ScholarGoogle Scholar

Index Terms

  1. On the bit complexity of finding points in connected components of a smooth real hypersurface

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ISSAC '20: Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation
      July 2020
      480 pages
      ISBN:9781450371001
      DOI:10.1145/3373207

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 July 2020

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      ISSAC '20 Paper Acceptance Rate58of102submissions,57%Overall Acceptance Rate395of838submissions,47%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader