skip to main content
10.1145/3373419.3373462acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicaipConference Proceedingsconference-collections
research-article

The Downscaling of the SMOS Global Sea Surface Salinity Product Based on MODIS Data Using a Deep Convolution Network Approach

Authors Info & Claims
Published:24 January 2020Publication History

ABSTRACT

Downscaling is a very important process to convert a coarse domain satellite product to a finer spatial resolution. In this paper, a deep learning based downscaling method was designed to improve the spatial resolution of the global sea surface salinity (SSS) products of Soil Moisture and Ocean Salinity (SMOS) satellite. The proposed algorithm is able to efficiently and effectively use high spatial-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data to improve the spatial resolution of SMOS SSS products.

References

  1. Fennel, K., Hetland, R., Feng, Y., & DiMarco, S. (2011). A coupled physical-biological model of the Northern Gulf of Mexico shelf: model description, validation and analysis of phytoplankton variability. Biogeosciences, 8(7), 1881--1899.Google ScholarGoogle ScholarCross RefCross Ref
  2. Xue, Z., He, R., Fennel, K., Cai, W. J., Lohrenz, S., & Hopkinson, C. (2013). Modeling ocean circulation and biogeochemical variability in the gulf of mexico. Biogeosciences, 10(11), 7219--7234.Google ScholarGoogle ScholarCross RefCross Ref
  3. Qing, S., Zhang, J., Cui, T., & Bao, Y. (2013). Retrieval of sea surface salinity with meris and modis data in the bohai sea. Remote Sensing of Environment, 136, 117--125.Google ScholarGoogle ScholarCross RefCross Ref
  4. Font, J., Camps, A., Borges, A., Marti?N-Neira, M., Boutin, J., & Reul, N., et al. (2010). Smos: the challenging sea surface salinity measurement from space. Proceedings of the IEEE, 98(5), 649--665.Google ScholarGoogle ScholarCross RefCross Ref
  5. Reul, N., Chapron, B., Lee, T., Donlon, C., Boutin, J., & Alory, G. (2014). Sea surface salinity structure of the meandering gulf stream revealed by smos sensor. Geophysical Research Letters, 41(9).Google ScholarGoogle Scholar
  6. Guimbard, Sébastien, Gourrion, Jér?me, Portabella, M., Turiel, A., Gabarro, C., & Font, J. (2012). Smos semi-empirical ocean forward model adjustment. IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1676--1687.Google ScholarGoogle ScholarCross RefCross Ref
  7. Meissner, T., Wentz, F. J., & Vine, D. M. L. (2018). The salinity retrieval algorithms for the nasa aquarius version 5 and smap version 3 releases. Remote Sensing, 10(7).Google ScholarGoogle Scholar
  8. Le Vine, D. M., Lagerloef, G. S. E., Colomb, F. R., Yueh, S. H., & Pellerano, F. A. (2007). Aquarius: an instrument to monitor sea surface salinity from space. IEEE Transactions on Geoscience and Remote Sensing, 45(7), 2040--2050.Google ScholarGoogle ScholarCross RefCross Ref
  9. Chen, S., & Hu, C. (2017). Estimating sea surface salinity in the northern gulf of mexico from satellite ocean color measurements. Remote Sensing of Environment, 201, 115--132.Google ScholarGoogle ScholarCross RefCross Ref
  10. Marghany, M. (2010). Least square algorithm for sea surface salinity retrieving from MODIS satellite data. IEEE International Conference on Signal & Image Processing Applications.Google ScholarGoogle Scholar
  11. Marghany, M., & Hashim, M. (2011). Retrieving seasonal sea surface salinity from MODIS satellite data using a Box-Jenkins algorithm. Geoscience & Remote Sensing Symposium. IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  12. Ammar, A., Labroue, S., Obligis, E., Mejia, C. E., Crepon, M., & Thiria, S. (2008). Sea surface salinity retrieval for the smos mission using neural networks. IEEE Transactions on Geoscience and Remote Sensing, 46(3), 754--764.Google ScholarGoogle ScholarCross RefCross Ref
  13. Wang, F., & Xu, Y. J. (2008). Development and application of a remote sensing-based salinity prediction model for a large estuarine lake in the us gulf of mexico coast. Journal of Hydrology (Amsterdam), 360(1-4), 184--194.Google ScholarGoogle ScholarCross RefCross Ref
  14. Zhao, J., Temimi, M., & Ghedira, H. (2017). Remotely sensed sea surface salinity in the hyper-saline arabian gulf: application to landsat 8 oli data. Estuarine, Coastal and Shelf Science, 187, 168--177.Google ScholarGoogle ScholarCross RefCross Ref
  15. Liu, M., Liu, X., Jiang, J., & Xia, X. (2013). Artificial neural network and random forest approaches for modeling of sea surface salinity. Int. J. Remote Sens. Appl, 3(4), 229--234.Google ScholarGoogle Scholar
  16. Wang, J., & Deng, Z. (2018). Development of a modis data based algorithm for retrieving nearshore sea surface salinity along the northern gulf of mexico coast. International Journal of Remote Sensing, 39(11), 3497--3511.Google ScholarGoogle ScholarCross RefCross Ref
  17. Atkinson, P. M. (2013). Downscaling in remote sensing. International Journal of Applied Earth Observation & Geoinformation, 22(1), 106--114.Google ScholarGoogle ScholarCross RefCross Ref
  18. Park, S. C., Park, M. K., & Kang, M. G. (2003). Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine, 20(3), 21--36.Google ScholarGoogle ScholarCross RefCross Ref
  19. Shen, H., Ng, M. K., Li, P., & Zhang, L. (2008). Super-resolution reconstruction algorithm to modis remote sensing images. The Computer Journal, 52(1), 90--100.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Chao, D., Chen, C. L., & Tang, X. (2016). Accelerating the Super-Resolution Convolutional Neural Network. Computer Vision - ECCV 2016.Google ScholarGoogle Scholar
  21. Peng, J., Loew, A., Merlin, O., & Verhoest, N. E. C. (2017). A review of spatial downscaling of satellite remotely sensed soil moisture. Reviews of Geophysics.Google ScholarGoogle Scholar
  22. Piles, M., Camps, A., Vall-Llossera, M., Corbella, I., & Walker, J. (2011). Downscaling smos-derived soil moisture using modis visible/infrared data. IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3156--3166.Google ScholarGoogle ScholarCross RefCross Ref
  23. Srivastava, P. K., Han, D., Ramirez, M. R., & Islam, T. (2013). Machine learning techniques for downscaling smos satellite soil moisture using modis land surface temperature for hydrological application. Water Resources Management, 27(8), 3127--3144.Google ScholarGoogle ScholarCross RefCross Ref
  24. Jing, W., Yang, Y., Yue, X., & Zhao, X. (2016). A spatial downscaling algorithm for satellite-based precipitation over the tibetan plateau based on ndvi, dem, and land surface temperature. Remote Sensing, 8(8), 655.Google ScholarGoogle ScholarCross RefCross Ref
  25. Anandhi, A., Srinivas, V. V., Nanjundiah, R. S., & Kumar, D. N. (2010). Downscaling precipitation to river basin in india for ipcc sres scenarios using support vector machine. International Journal of Climatology, 28(3), 401--420.Google ScholarGoogle ScholarCross RefCross Ref
  26. Ghosh, S., & Mujumdar, P. P. (2008). Statistical downscaling of gcm simulations to streamflow using relevance vector machine. Advances in Water Resources, 31(1), 132--146.Google ScholarGoogle ScholarCross RefCross Ref
  27. Bindhu, V. M., Narasimhan, B., & Sudheer, K. P. (2013). Development and verification of a non-linear disaggregation method (nl-distrad) to downscale modis land surface temperature to the spatial scale of landsat thermal data to estimate evapotranspiration. Remote Sensing of Environment, 135(8), 118--129.Google ScholarGoogle ScholarCross RefCross Ref
  28. Russell, S. J., & Norvig, P. (2010). Artificial intelligence: a modern approach. Applied Mechanics & Materials, 263(5), 2829--2833.Google ScholarGoogle Scholar
  29. Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.Google ScholarGoogle ScholarCross RefCross Ref
  30. Al-Saffar, A. A. M., Hai, T., & Talab, M. A. (2018). Review of deep convolution neural network in image classification. International Conference on Radar.Google ScholarGoogle Scholar
  31. Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2017). Deep image prior.Google ScholarGoogle Scholar
  32. Aurélien Ducournau, & Fablet, R. (2017). Deep Learning for Ocean Remote Sensing: An Application of Convolutional Neural Networks for Super-Resolution on Satellite-Derived SST Data. Workshop on Pattern Recognition in Remote Sensing. IEEE.Google ScholarGoogle Scholar

Index Terms

  1. The Downscaling of the SMOS Global Sea Surface Salinity Product Based on MODIS Data Using a Deep Convolution Network Approach

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          ICAIP '19: Proceedings of the 2019 3rd International Conference on Advances in Image Processing
          November 2019
          232 pages
          ISBN:9781450376754
          DOI:10.1145/3373419

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 24 January 2020

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader