skip to main content
research-article

Gene Expression and Protein Function: A Survey of Deep Learning Methods

Published: 26 November 2019 Publication History

Abstract

Deep learning methods have found increasing interest in recent years because of their wide applicability for prediction and inference in numerous disciplines such as image recognition, natural language processing, and speech recognition. Computational biology is a data-intensive field in which the types of data can be very diverse. These different types of structured data require different neural architectures. The problems of gene expression and protein function prediction are related areas in computational biology (since genes control the production of proteins). This survey provides an overview of the various types of problems in this domain and the neural architectures that work for these data sets. Since deep learning is a new field compared to traditional machine learning, much of the work in this area corresponds to traditional machine learning rather than deep learning. However, as the sizes of protein and gene expression data sets continue to grow, the possibility of using data-hungry deep learning methods continues to increase. Indeed, the previous five years have seen a sudden increase in deep learning models, although some areas of protein analytics and gene expression still remain relatively unexplored. Therefore, aside from the survey on the deep learning work directly related to these problems, we also point out existing deep learning work from other domains that has the potential to be applied to these domains.

References

[1]
Akutsu, T., Miyano, S., and Kuhara, S. 1999. Identification of genetic networks from a small number of gene expression patterns under the boolean network model. In Biocomputing'99. World Scientific, 17--28.
[2]
Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J. 2015. Predicting the sequence specificities of dna-and rna-binding proteins by deep learning. Nature biotechnology 33, 8, 831.
[3]
Aljalbout, E., Golkov, V., Siddiqui, Y., and Cremers, D. 2018. Clustering with deep learning: Taxonomy and new methods. arXiv preprint arXiv:1801.07648 .
[4]
Angermueller, C., P¨arnamaa, T., Parts, L., and Stegle, O. 2016. Deep learning for computational biology. Molecular systems biology 12, 7, 878.
[5]
Asur, S., Ucar, D., and Parthasarathy, S. 2007. An ensemble framework for clustering protein--protein interaction networks. Bioinformatics 23, 13, i29--i40.
[6]
Bader, G. D. and Hogue, C. W. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC bioinformatics 4, 1, 2.
[7]
Baldi, P., Brunak, S., Frasconi, P., Soda, G., and Pollastri, G. 1999. Exploiting the past and the future in protein secondary structure prediction. Bioinformat- ics 15, 11, 937--946.
[8]
Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. 2007. Greedy layer-wise training of deep networks. In Advances in neural information processing systems. 153--160.
[9]
Bilgic, M. and Getoor, L. 2008. Effective label acquisition for collective classification. In ACM KDD Confer- ence. ACM, 43--51.
[10]
Bishop, C. 1995. Neural networks for pattern recognition. Oxford university press.
[11]
Bishop, C. M. 2006. Pattern Recognition and Machine Learning. Springer.
[12]
Biswas, S. and Acharyya, S. 2016. Neural model of gene regulatory network: a survey on supportive metaheuristics. Theory in Biosciences 135, 1--2, 1--19.
[13]
Biswas, S. and Acharyya, S. 2018. A bi-objective rnn model to reconstruct gene regulatory network: A modified multi-objective simulated annealing approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 15, 6, 2053--2059.
[14]
Bogdanov, P. and Singh, A. K. 2010. Molecular function prediction using neighborhood features. IEEE/ACM Transactions on Computational Biology and Bioinformat- ics (TCBB) 7, 2, 208--217.
[15]
Brown, M. P., Grundy, W. N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T. S., Ares, M., and Haussler, D. 2000. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proceedings of the National Academy of Sciences 97, 1, 262--267.
[16]
Cao, R., Freitas, C., Chan, L., Sun, M., Jiang, H., and Chen, Z. 2017. Prolango: protein function prediction using neural machine translation based on a recurrent neural network. Molecules 22, 10, 1732.
[17]
Caragea, C. and Honavar, V. 2009. Machine learning in computational biology. In Encyclopedia of Database Systems. Springer, 1663--1667.
[18]
Chen, B., Fan, W., Liu, J., and Wu, F.-X. 2013. Identifying protein complexes and functional modules--from static ppi networks to dynamic ppi networks. Briefings in bioinformatics 15, 2, 177--194.
[19]
Chen, H., Zhao, H., Shen, J., Zhou, R., and Zhou, Q. 2015. Supervised machine learning model for high dimensional gene data in colon cancer detection. In Big Data (BigData Congress), 2015 IEEE International Congress on. IEEE, 134--141.
[20]
Chen, T., He, H. L., and Church, G. M. 1999. Modeling gene expression with differential equations. In Bio- computing'99. World Scientific, 29--40.
[21]
Chen, Y., Li, Y., Narayan, R., Subramanian, A., and Xie, X. 2016. Gene expression inference with deep learning. Bioinformatics 32, 12, 1832--1839.
[22]
Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., Ferrero, E., Agapow, P.-M., Zietz, M., Hoffman, M. M., et al. 2018. Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface 15, 141, 20170387.
[23]
Coates, A., Ng, A., and Lee, H. 2011. An analysis of single-layer networks in unsupervised feature learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics. 215--223.
[24]
Cohen, A. M. and Hersh, W. R. 2005. A survey of current work in biomedical text mining. Briefings in bioin- formatics 6, 1, 57--71.
[25]
Danaee, P., Ghaeini, R., and Hendrix, D. A. 2017. A deep learning approach for cancer detection and relevant gene identification. In PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017. World Scientific, 219--229.
[26]
Delgado, F. M. and G´omez-Vela, F. 2018. Computational methods for gene regulatory networks reconstruction and analysis: A review. Artificial intelligence in medicine.
[27]
Deng, M., Zhang, K., Mehta, S., Chen, T., and Sun, F. 2003. Prediction of protein function using protein-- protein interaction data. Journal of computational biol- ogy 10, 6, 947--960.
[28]
Desrosiers, C. and Karypis, G. 2009. Within-network classification using local structure similarity. In Joint Eu- ropean Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 260--275.
[29]
Di Lena, P., Nagata, K., and Baldi, P. 2012. Deep architectures for protein contact map prediction. Bioin- formatics 28, 19, 2449--2457.
[30]
Dill, K. A., Ozkan, S. B., Shell, M. S., and Weikl, T. R. 2008. The protein folding problem. Annu. Rev. Bio- phys. 37, 289--316.
[31]
Donaldson, I., Martin, J., De Bruijn, B., Wolting, C., Lay, V., Tuekam, B., Zhang, S., Baskin, B., Bader, G. D., Michalickova, K., et al. 2003. Prebind and textomy--mining the biomedical literature for proteinprotein interactions using a support vector machine. BMC bioinformatics 4, 1, 11.
[32]
Dudoit, S., Fridlyand, J., and Speed, T. P. 2002. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American statistical association 97, 457, 77--87.
[33]
Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. 2015. Convolutional networks on graphs for learning molecular fingerprints. In Advances in neural information processing systems. 2224--2232.
[34]
Elman, J. L. 1990. Finding structure in time. Cognitive science 14, 2, 179--211.
[35]
Evans et al., R. 2018. De novo structure prediction with deep-learning based scoring. Thirteenth Critical Assess- ment of Techniques for Protein Structure Prediction (Ab- stracts).
[36]
Fakoor, R., Ladhak, F., Nazi, A., and Huber, M. 2013. Using deep learning to enhance cancer diagnosis and classification. In Proceedings of the International Confer- ence on Machine Learning. Vol. 28. ACM New York, USA.
[37]
Fariselli, P., Pazos, F., Valencia, A., and Casadio, R. 2002. Prediction of protein--protein interaction sites in heterocomplexes with neural networks. European Journal of Biochemistry 269, 5, 1356--1361.
[38]
Fortunato, S. 2010. Community detection in graphs. Physics reports 486, 3--5, 75--174.
[39]
Friedman, N. 2004. Inferring cellular networks using probabilistic graphical models. Science 303, 5659, 799-- 805.
[40]
Friedman, N., Linial, M., Nachman, I., and Pe'er, D. 2000. Using bayesian networks to analyze expression data. Journal of computational biology 7, 3--4, 601--620.
[41]
Goodfellow, I., Bengio, Y., and Courville, A. 2016. Deep Learning. MIT Press.
[42]
Grover, A. and Leskovec, J. 2016. node2vec: Scalable feature learning for networks. In ACM KDD Conference. ACM, 855--864.
[43]
Gupta, A., Wang, H., and Ganapathiraju, M. 2015. Learning structure in gene expression data using deep architectures, with an application to gene clustering. In Bioinformatics and Biomedicine (BIBM), 2015 IEEE In- ternational Conference on. IEEE, 1328--1335.
[44]
Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. 2002. Gene selection for cancer classification using support vector machines. Machine learning 46, 1--3, 389--422.
[45]
Hamilton, W., Ying, Z., and Leskovec, J. 2017a. Inductive representation learning on large graphs. In Ad- vances in Neural Information Processing Systems. 1024-- 1034.
[46]
Hamilton, W. L., Ying, R., and Leskovec, J. 2017b. Representation learning on graphs: Methods and applications. arXiv preprint arXiv:1709.05584 .
[47]
He, K., Zhang, X., Ren, S., and Sun, J. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770--778.
[48]
Henaff, M., Bruna, J., and LeCun, Y. 2015. Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163 .
[49]
Hochreiter, S. and Schmidhuber, J. 1997. Long shortterm memory. Neural computation 9, 8, 1735--1780.
[50]
Hsieh, Y.-L., Chang, Y.-C., Chang, N.-W., and Hsu, W.-L. 2017. Identifying protein-protein interactions in biomedical literature using recurrent neural networks with long short-term memory. In Proceedings of the Eighth In- ternational Joint Conference on Natural Language Pro- cessing (Volume 2: Short Papers). Vol. 2. 240--245.
[51]
Hu, X., Maglia, A. M., and Wunsch, D. C. 2005. A general recurrent neural network approach to model genetic regulatory networks.
[52]
Huang, X., Li, J., and Hu, X. 2017. Label informed attributed network embedding. In WSDM. 731--739.
[53]
Jiang, D., Tang, C., and Zhang, A. 2004. Cluster analysis for gene expression data: a survey. IEEE Transac- tions on knowledge and data engineering 16, 11, 1370-- 1386.
[54]
Jo, T., Hou, J., Eickholt, J., and Cheng, J. 2015. Improving protein fold recognition by deep learning networks. Scientific reports 5, 17573.
[55]
Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C. R., Peterson, C., et al. 2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature medicine 7, 6, 673.
[56]
Kingma, D. P. and Welling, M. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 .
[57]
Kipf, T. N. and Welling, M. 2016a. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 .
[58]
Kipf, T. N. and Welling, M. 2016b. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 .
[59]
Kordmahalleh, M. M., Sefidmazgi, M. G., Harrison, S. H., and Homaifar, A. 2017. Identifying timedelayed gene regulatory networks via an evolvable hierarchical recurrent neural network. BioData mining 10, 1, 29.
[60]
Krizhevsky, A., Sutskever, I., and Hinton, G. E. 2012. Imagenet classification with deep convolutional neural networks. In NIPS. 1097--1105.
[61]
Kulmanov, M., Khan, M. A., and Hoehndorf, R. 2017. Deepgo: predicting protein functions from sequence and interactions using a deep ontology-aware classifier. Bioinformatics 34, 4, 660--668.
[62]
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 11, 2278--2324.
[63]
Lee, D., Redfern, O., and Orengo, C. 2007. Predicting protein function from sequence and structure. Nature Reviews Molecular Cell Biology 8, 12, 995.
[64]
Li, H. and Homer, N. 2010. A survey of sequence alignment algorithms for next-generation sequencing. Briefings in bioinformatics 11, 5, 473--483.
[65]
Liao, L. and Noble, W. S. 2003. Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships. Journal of computational biology 10, 6, 857-- 868.
[66]
Libbrecht, M. W. and Noble, W. S. 2015. Machine learning applications in genetics and genomics. Nature Re- views Genetics 16, 6, 321.
[67]
Liu, X. 2017. Deep recurrent neural network for protein function prediction from sequence. arXiv preprint arXiv:1701.08318 .
[68]
London, B. and Getoor, L. 2014. Collective classification of network data. Data Classification: Algorithms and Applications 399.
[69]
L¨u, L. and Zhou, T. 2011. Link prediction in complex networks: A survey. Physica A: statistical mechanics and its applications 390, 6, 1150--1170.
[70]
Maraziotis, I., Dragomir, A., and Bezerianos, A. 2007. Gene networks reconstruction and time-series prediction from microarray data using recurrent neural fuzzy networks. IET Systems Biology 1, 1, 41--50.
[71]
Martin, S., Roe, D., and Faulon, J.-L. 2004. Predicting protein--protein interactions using signature products. Bioinformatics 21, 2, 218--226.
[72]
Moult, J. 2005. A decade of casp: progress, bottlenecks and prognosis in protein structure prediction. Current opinion in structural biology 15, 3, 285--289.
[73]
Murvai, J., Vlahovicek, K., Szepesv´ari, C., and Pongor, S. 2001. Prediction of protein functional domains from sequences using artificial neural networks. Genome research 11, 8, 1410--1417.
[74]
Nepusz, T., Yu, H., and Paccanaro, A. 2012. Detecting overlapping protein complexes in protein-protein interaction networks. Nature methods 9, 5, 471.
[75]
Neville, J. and Jensen, D. 2003. Collective classification with relational dependency networks. In Second In- ternational Workshop on Multi-Relational Data Mining. 77--91.
[76]
Noble, W. S. et al. 2004. Support vector machine applications in computational biology. Kernel methods in computational biology, 71--92.
[77]
Peng, Y. and Lu, Z. 2017. Deep learning for extracting protein-protein interactions from biomedical literature. arXiv preprint arXiv:1706.01556 .
[78]
Qi, Y., Bar-Joseph, Z., and Klein-Seetharaman, J. 2006. Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins: Structure, Function, and Bioinfor- matics 63, 3, 490--500.
[79]
Quang, D., Chen, Y., and Xie, X. 2014. Dann: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31, 5, 761--763.
[80]
Rav', D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., and Yang, G.-Z. 2017. Deep learning for health informatics. IEEE journal of biomedical and health informatics 21, 1, 4--21.
[81]
Rubiolo, M., Milone, D. H., and Stegmayer, G. 2015. Mining gene regulatory networks by neural modeling of expression time-series. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 12, 6, 1365--1373.
[82]
Rubiolo, M., Milone, D. H., and Stegmayer, G. 2017. Extreme learning machines for reverse engineering of gene regulatory networks from expression time series. Bioinformatics 34, 7, 1253--1260.
[83]
Sch¨olkopf, B., Tsuda, K., and Vert, J.-P. 2004. Ker- nel methods in computational biology. MIT press.
[84]
Schwikowski, B., Uetz, P., and Fields, S. 2000. A network of protein--protein interactions in yeast. Nature biotechnology 18, 12, 1257.
[85]
Sharan, R., Ulitsky, I., and Shamir, R. 2007. Network-based prediction of protein function. Molecular systems biology 3, 1, 88.
[86]
Shmulevich, I., Dougherty, E. R., and Zhang, W. 2002. From boolean to probabilistic boolean networks as models of genetic regulatory networks. Proceedings of the IEEE 90, 11, 1778--1792.
[87]
Simpson, M. S. and Demner-Fushman, D. 2012. Biomedical text mining: a survey of recent progress. In Mining text data. Springer, 465--517.
[88]
Singh, R., Lanchantin, J., Robins, G., and Qi, Y. 2016. Deepchrome: deep-learning for predicting gene expression from histone modifications. Bioinformat- ics 32, 17, i639--i648.
[89]
Smith, M. R., Clement, M., Martinez, T., and Snell, Q. 2010. Time series gene expression prediction using neural networks with hidden layers.
[90]
Spencer, M., Eickholt, J., and Cheng, J. 2015. A deep learning network approach to ab initio protein secondary structure prediction. IEEE/ACM transactions on computational biology and bioinformatics (TCBB) 12, 1, 103--112.
[91]
Spirin, V. and Mirny, L. A. 2003. Protein complexes and functional modules in molecular networks. Proceed- ings of the National Academy of Sciences 100, 21, 12123-- 12128.
[92]
Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K. P., et al. 2014. String v10: protein--protein interaction networks, integrated over the tree of life. Nucleic acids re- search 43, D1, D447--D452.
[93]
Tang, H., Zhao, Y.-W., Zou, P., Zhang, C.-M., Chen, R., Huang, P., and Lin, H. 2018. Hbpred: a tool to identify growth hormone-binding proteins. International Journal of Biological Sciences 14, 8, 957--964.
[94]
Tian, F., Gao, B., Cui, Q., Chen, E., and Liu, T.-Y. 2014. Learning deep representations for graph clustering. In AAAI. 1293--1299.
[95]
Titus, A. J., Bobak, C. A., and Christensen, B. C. 2018a. A new dimension of breast cancer epigenetics. Joint Conference on Biomedical Engineering Systems Technology.
[96]
Titus, A. J., Wilkins, O. M., Bobak, C. A., and Christensen, B. C. 2018b. An unsupervised deep learning framework with variational autoencoders for genomewide dna methylation analysis and biologic feature extraction applied to breast cancer. bioRxiv, 433763.
[97]
Vazquez, A., Flammini, A., Maritan, A., and Vespignani, A. 2003. Global protein function prediction from protein-protein interaction networks. Nature biotechnol- ogy 21, 6, 697.
[98]
Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. 2008. Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning. ACM, 1096--1103.
[99]
Von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S., and Bork, P. 2002. Comparative assessment of large-scale data sets of protein--protein interactions. Nature 417, 6887, 399.
[100]
Wang, J. T., Zaki, M. J., Toivonen, H. T., and Shasha, D. 2005. Introduction to data mining in bioinformatics. In Data Mining in Bioinformatics. Springer, 3--8.
[101]
Wang, S., Sun, S., Li, Z., Zhang, R., and Xu, J. 2017. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS computational biol- ogy 13, 1, e1005324.
[102]
Watson, J. D., Laskowski, R. A., and Thornton, J. M. 2005. Predicting protein function from sequence and structural data. Current opinion in structural biol- ogy 15, 3, 275--284.
[103]
Way, G. P. and Greene, C. S. 2017. Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders. bioRxiv, 174474.
[104]
Webb, S. 2018. Deep learning for biology. Na- ture 554, 7693, 555--557.
[105]
Wu, Q., Ye, Y., Ho, S.-S., and Zhou, S. 2014. Semisupervised multi-label collective classification ensemble for functional genomics. BMC genomics 15, 9, S17.
[106]
Xiong, W., Liu, H., Guan, J., and Zhou, S. 2013. Protein function prediction by collective classification with explicit and implicit edges in protein-protein interaction networks. BMC bioinformatics 14, 12, S4.
[107]
Yousefi, S., Amrollahi, F., Amgad, M., Dong, C., Lewis, J. E., Song, C., Gutman, D. A., Halani, S. H., Vega, J. E. V., Brat, D. J., et al. 2017. Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models. Scientific Reports 7, 1, 11707.
[108]
Yue, T. andWang, H. 2018. Deep learning for genomics: A concise overview. arXiv preprint arXiv:1802.00810 .
[109]
Zeng, H., Wang, S., Zhou, T., Zhao, F., Li, X., Wu, Q., and Xu, J. 2018. Complexcontact: a web server for inter-protein contact prediction using deep learning. Nu- cleic acids research.
[110]
Zhou, T., Wang, S., and Xu, J. 2017. Deep learning reveals many more inter-protein residue-residue contacts than direct coupling analysis. bioRxiv, 240754.
[111]
Zhu, X., Ghahramani, Z., and Lafferty, J. D. 2003. Semi-supervised learning using gaussian fields and harmonic functions. In ICML Conference. 912--919.

Cited By

View all
  • (2024)Artificial intelligence-based smart devices for biomedical applicationsAdvances in Artificial Intelligence10.1016/B978-0-443-19073-5.00016-1(339-357)Online publication date: 2024
  • (2023)Machine Learning Methods for Cancer Classification Using Gene Expression Data: A ReviewBioengineering10.3390/bioengineering1002017310:2(173)Online publication date: 28-Jan-2023
  • (2023)Protein Function Prediction With Functional and Topological Knowledge of Gene OntologyIEEE Transactions on NanoBioscience10.1109/TNB.2023.327803322:4(755-762)Online publication date: Oct-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGKDD Explorations Newsletter
ACM SIGKDD Explorations Newsletter  Volume 21, Issue 2
December 2019
100 pages
ISSN:1931-0145
EISSN:1931-0153
DOI:10.1145/3373464
Issue’s Table of Contents
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 November 2019
Published in SIGKDD Volume 21, Issue 2

Check for updates

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)19
  • Downloads (Last 6 weeks)1
Reflects downloads up to 28 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Artificial intelligence-based smart devices for biomedical applicationsAdvances in Artificial Intelligence10.1016/B978-0-443-19073-5.00016-1(339-357)Online publication date: 2024
  • (2023)Machine Learning Methods for Cancer Classification Using Gene Expression Data: A ReviewBioengineering10.3390/bioengineering1002017310:2(173)Online publication date: 28-Jan-2023
  • (2023)Protein Function Prediction With Functional and Topological Knowledge of Gene OntologyIEEE Transactions on NanoBioscience10.1109/TNB.2023.327803322:4(755-762)Online publication date: Oct-2023
  • (2021)Explaining Ovarian Cancer Gene Expression Profiles with Fuzzy Rules and Genetic AlgorithmsElectronics10.3390/electronics1004037510:4(375)Online publication date: 4-Feb-2021

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media