skip to main content
10.1145/3375923.3375926acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbbeConference Proceedingsconference-collections
research-article

Synthesis of Lower Limbs Exoskeleton for the Rehabilitation of Patients with Disorders of Motor and Proprioceptive Systems

Authors Info & Claims
Published:25 March 2020Publication History

ABSTRACT

In this work is presented a new design of a rehabilitation exoskeleton intended for the rehabilitation of disabled people and patients with impaired motor functions. A distinctive feature of this design is that the auxiliary legs used in it, in addition to rotational motion drives that simulate the work of the hip joints, are equipped with controlled artificial knee joints, providing biologically natural kinematics of patient during the rehabilitation process. In addition, to solve the problem of motor redundancy in the algorithms of the exoskeleton control system, synergistic quality criteria are used, which also contribute to the realization of biologically natural movements, and, consequently, the quality of rehabilitation effects. The drive control of joints is carried out using commands generated by a hierarchical control system operating based on information from inertial and resistor sensors mounted directly on the exoskeleton elements.

References

  1. Gillis, L. 1948. Recent advances in the treatment of arm amputations, kineplastic surgery and arm prostheses. Ann. R. Coll. Surg. Engl. 3, 227--247. PMID 18099756.Google ScholarGoogle Scholar
  2. Poliakov, A., Pakhaliuk, V., Kolesova, M., Shtanko, P. and Ovchinnikova, M. Transfemoral prostheses control in a frame of intellectual-synergetic concept. In Proc. of the 2017-2nd Int. Conf. on Autom., Mech. and Elec. Eng. (AMEE 2017). (Shenzhen, China, 2017). 245--253. DOI=https://doi.org/10.2991/amee-17.2017.51Google ScholarGoogle ScholarCross RefCross Ref
  3. Morasso, P. 1981. Spatial control of arm movements. Exp. Brain Res. 42, 223--227. DOI= https://doi.org/10.1007/BF00236911Google ScholarGoogle ScholarCross RefCross Ref
  4. Sanguineti, V., Morasso, P., Baratto, L., Brichetto, G., Mancardi, G.L. and Solaro, C. 2003. Cerebellar ataxia: quantitative assessment and cybernetic interpretations. Hum. Mov. Sci. 22, 189--195. DOI=https://doi.org/10.1016/S0167-9457(02)00159-8Google ScholarGoogle ScholarCross RefCross Ref
  5. Mohan, V. and Morasso, P. 2011. Passive motion paradigm: an alternative to optimal control. Front. Neurorobot., 5, 1--28. DOI=https://doi.org/10.3389/fnbot.2011.00004Google ScholarGoogle ScholarCross RefCross Ref
  6. Flash, T. and Hogan, N. 1985. The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5, 1688--1703. DOI= https://doi.org/10.1523/JNEUROSCI.05-07-01688Google ScholarGoogle ScholarCross RefCross Ref
  7. Morasso, P. 1981. Spatial control of arm movements. Exp. Brain Res. 42, 223--227. DOI=https://doi.org/10.1007/BF00236911Google ScholarGoogle ScholarCross RefCross Ref
  8. Uno, Y., Kawato, M. and Suzuki, R. 1989. Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biol. Cybern. 61, 89--101. DOI=https://doi.org/10.1007/BF00204593Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ben-Itzhak, K.S. and Karniel, A. 2008. Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements. Neural. Comput. 20, 779--812. DOI= https://doi.org/10.1162/neco.2007.12-05-077Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Todorov, E. 2009. Efficient computation of optimal actions. Proc. Natl. Acad. Sci. U.S.A. 106, 11478--11483. DOI=https://doi.org/10.1073/pnas.0710743106Google ScholarGoogle ScholarCross RefCross Ref
  11. Gottlieb, G.L., Song, Q.L., Hong, D.A. and Corcos, D.M. 1996. Coordinating two degrees of freedom during human arm movement: load and speed invariance of relative joint torques. J. of Neurophys. 76(5), 3196--3206. PMID: 8930266Google ScholarGoogle ScholarCross RefCross Ref
  12. Gottlieb, G.L., Song, Q.L., Almeida, G.L., Hong, D.A. and Corcos, D.M. 1997. Directional control of planar human arm movement. J. of Neurophys. 78(6), 2985--2998. PMID: 9405518Google ScholarGoogle ScholarCross RefCross Ref
  13. Fomin, S.V. and Berkinblit, M.B. 1973. Mathematical problems in biology. Moscow, Science. 200.Google ScholarGoogle Scholar
  14. Liu, D. and Todorov, E. 2007. Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. J. Neurosci. 27, 9354--9368. DOI=https://doi.org/10.1523/jneurosci.1110-06.2007Google ScholarGoogle ScholarCross RefCross Ref
  15. Guigon, E., Baraduc, P. and Desmurget, M. 2008. Computational motor control: feedback and accuracy. Eur. J. Neurosci. 27, 1003--1016. DOI= https://doi.org/10.1111/j.1460-9568.2008.06028.xGoogle ScholarGoogle ScholarCross RefCross Ref
  16. Kutch, J.J., Kuo, A.D., Bloch, A.M. and Rymer, W.Z. 2008. Endpoint force fluctuations reveal flexible rather than synergistic patterns of muscle cooperation. J. Neurophysiol. 100, 2455--2471. DOI= https://doi.org/10.1152/jn.90274.2008Google ScholarGoogle ScholarCross RefCross Ref
  17. Esquenazi, A. and Talaty, M. 2019. Robotics for Lower Limb Rehabilitation. Phy. Med. and Rehab. Clin. of North Am. 30(2), 385--397. DOI=https://doi.org/10.1016/j.pmr.2018.12.012Google ScholarGoogle ScholarCross RefCross Ref
  18. Zhang, L., Chen, W.H., Wang, J.H. and Zhang, J.B. 2018. Adaptive robust slide mode trajectory tracking controller for lower extremity rehabilitation exoskeleton. Proc. of the 2018-13th IEEE Conf. on Indust. Elect. and Appl. (ICIEA 2018). 992--997. DOI=https://doi.org/10.1109/ICIEA.2018.8397856Google ScholarGoogle Scholar
  19. Vantilt, J., Tanghe, K., Afschrift, M., Bruijnes, A., Junius, K., Geeroms, J. Aertbelien, E., De Groote, F., Lefeber, D., Jonkers, I. and De Schutter, J. 2019. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements. J. of Neuroeng. and Rehab.16(1), 65. DOI= https://doi.org/10.1186/s12984-019-0526-8Google ScholarGoogle ScholarCross RefCross Ref
  20. Shi, L., Fu, L. and Liu, Z. 2018. Model-based active impedance controller development of the exoskeleton rehabilitation robot (ERRobot) for lower extremity. 2018 IEEE SmartWorld, Ubiq. Intel. & Comp., Adv. & Trust. Comp., Scal. Comp. & Com., Cloud & Big Data Comp., Int. of People and Smart City Innov. 150--155. DOI= https://doi.org/10.1109/SmartWorld.2018.00061Google ScholarGoogle Scholar
  21. Sanchez-Villamanan, M.D., Gonzalez-Vargas, J., Torricelli, D., Moreno, J.C. and Pons, J.L. 2019. Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. J. of Neuroeng. and Rehab. 16. DOI= https://doi.org/10.1186/s12984-019-0517-9Google ScholarGoogle Scholar
  22. Aliman, N., Ramli, R. and Haris, S.M. 2017. Design and development of lower limb exoskeletons: A survey. Rob. and Autonom. Sys. 95, 102--116. DOI= https://doi.org/10.1016/j.robot.2017.05.013Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kolesova, M., Polyakov, A. and Kalinin, M. 2007. Qantitative and qualitative estimations of the manipulator end-effector trajectory planning by synergetic criterion. Facta Universitatis. Ser: Mech., Autom., Cont. and Robot. 6(Special Issues), 53--70. URL= http://facta.junis.ni.ac.rs/macar/macar2007s/macar2007s05.pdfGoogle ScholarGoogle Scholar
  24. Poliakov, A., Olinichenko, G., Pashkov, Y., Kalinin, M., Kramar, V. and Burkov, D. 2012. A new design of a unipolar hip endoprosthesis focused on the best quality of life of the patients during the postoperative period. IEEE International Conference on Biomedical Engineering (ICoBE 2012). 22--27. DOI= https://doi.org/10.1109/ICoBE.2012.6178948Google ScholarGoogle ScholarCross RefCross Ref
  25. Taha, Z., Abdul Majeed, A., Abidin, A., Ali, M., Khairuddin, I., Deboucha, A. and Wong, M. 2017. A hybrid active force control of a lower limb exoskeleton for gait rehabilitation. Biomed. Eng.-Biomed. Tech. 63(4). DOI= https://doi.org/10.1515/bmt-2016-0039Google ScholarGoogle Scholar
  26. Seraji, H. 1987. A new approach to adaptive control of manipulators. J. of Dyn. Sys., Measure., and Cont. 109, 193--202. DOI= https://doi.org/10.1115/1.3143844Google ScholarGoogle Scholar
  27. Poliakov, A., Pakhaliuk, V., Lozinskiy, N., Kolesova, M., Bugayov, P. and Shtanko, P. 2016. Biosimilar artificial knee for transfemoral prostheses and exoskeletons. Facta Universitatis. Ser. Mech. Eng. 14(3), 321--328. DOI= https://doi.org/10.22190/FUME1603321PGoogle ScholarGoogle ScholarCross RefCross Ref
  28. Moreno, J.S., De Lima, E.R., Ruiz, A.F., Brunetti, F.J. and Pons, J.L. 2006. Design and implementation of an inertial measurement unit for control of artificial limbs: Application on leg orthoses. Sensors and Actuators. B 118, 333--337. DOI= https://doi.org/10.1016/j.snb.2006.04.039Google ScholarGoogle ScholarCross RefCross Ref
  29. Poliakov, A. 2018. Motor activity phase recognition of a disabled person at the walking on transfemoral prosthesis. Fundam. and Appl. Prob. of Eng. and Tech. 19(1-4), 58--72 (In Russian).Google ScholarGoogle Scholar
  30. Fleming, M.K., Theologis, T., Buckingham, M. and Johansen-Berg, H. 2018. Transcranial direct current stimulation for promoting motor function in cerebral palsy: a review. J. of NeuroEng. and Rehab. 5, 121. DOI= https://doi.org/10.1186/s12984-018-0476-6Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Synthesis of Lower Limbs Exoskeleton for the Rehabilitation of Patients with Disorders of Motor and Proprioceptive Systems

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICBBE '19: Proceedings of the 2019 6th International Conference on Biomedical and Bioinformatics Engineering
      November 2019
      214 pages
      ISBN:9781450372992
      DOI:10.1145/3375923

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 25 March 2020

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)7
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader