
Impact Analysis of Cross-Project Bugs on Software Ecosystems
Wanwangying Ma

State Key Lab. for Novel Software
Technology, Nanjing University

Nanjing, China
wwyma@smail.nju.edu.cn

Lin Chen∗
State Key Lab. for Novel Software
Technology, Nanjing University

Nanjing, China
lchen@nju.edu.cn

Xiangyu Zhang
Purdue University
West Lafayette, USA

xyzhang@cs.purdue.edu

Yang Feng
Nanjing University
Nanjing, China

Zhaogui Xu
Nanjing University
Nanjing, China

Zhifei Chen
Nanjing University
Nanjing, China

Yuming Zhou
State Key Lab. for Novel Software
Technology, Nanjing University

Nanjing, China
zhouyuming@nju.edu.cn

Baowen Xu
State Key Lab. for Novel Software
Technology, Nanjing University

Nanjing, China
bwxu@nju.edu.cn

ABSTRACT
Software projects are increasingly forming social-technical ecosys-
tems within which individual projects rely on the infrastructures
or functional components provided by other projects, leading to
complex inter-dependencies. Through inter-project dependencies,
a bug in an upstream project may have profound impact on a large
number of downstream projects, resulting in cross-project bugs.
This emerging type of bugs has brought new challenges in bug
fixing due to their unclear influence on downstream projects. In
this paper, we present an approach to estimating the impact of a
cross-project bug within its ecosystem by identifying the affected
downstream modules (classes/methods). Note that a downstream
project that uses a buggy upstream function may not be affected
as the usage does not satisfy the failure inducing preconditions.
For a reported bug with the known root cause function and failure
inducing preconditions, we first collect the candidate downstream
modules that call the upstream function through an ecosystem-wide
dependence analysis. Then, the paths to the call sites of the buggy
upstream function are encoded as symbolic constraints. Solving
the constraints, together with the failure inducing preconditions,
identifies the affected downstream modules. Our evaluation of 31
existing upstream bugs on the scientific Python ecosystem contain-
ing 121 versions of 22 popular projects (with a total of 16 millions
LOC) shows that the approach is highly effective: from the 25490
candidate downstream modules that invoke the buggy upstream
functions, it identifies 1132 modules where the upstream bugs can
be triggered, pruning 95.6% of the candidates. The technique has
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380442

no false negatives and an average false positive rate of 7.9%. Only
49 downstream modules (out of the 1132 we found) were reported
before to be affected.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Maintaining software; Open source model.

KEYWORDS
Software Ecosystems, Cross-project Bugs, Bug Impact, Dependence
Analysis, Symbolic Constraints
ACM Reference Format:
WanwangyingMa, Lin Chen, Xiangyu Zhang, Yang Feng, Zhaogui Xu, Zhifei
Chen, Yuming Zhou, and Baowen Xu. 2020. Impact Analysis of Cross-Project
Bugs on Software Ecosystems. In 42nd International Conference on Software
Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3377811.3380442

1 INTRODUCTION
Recent years have seen a trend that software projects are forming
large scale social-technical ecosystems in which projects depend
on the infrastructures or functional components provided by other
projects [17]. Projects within an ecosystem often have complex
inter-dependencies that impose new challenges in software main-
tenance [9, 27]. As an important indicator of software quality, bugs
have long been a focus of study in the field of software engineering
and are undoubtedly a more significant concern in ecosystems as
bugs found in a project are very likely to affect many other projects
in the ecosystem through inter-dependencies [7, 21].

For example, Scipy is an upstream library in the scientific Python
ecosystem and has a significant number of downstream projects de-
pending on it, such as Scikit-image that is a collection of algorithms
for image processing and Nilearn, which is a Python module for fast
and easy statistical learning on neuroimaging data. A bugwas found
in Scipy’s function scipy.ndimage.interpolation.affine_transf-

orm()(reported in the project Scipy with issue id scipy/scipy#1547)
and confirmed to affect Nilearn. This kind of bug which has impact

100

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

https://doi.org/10.1145/3377811.3380442
https://doi.org/10.1145/3377811.3380442
https://github.com/scipy/scipy/issues/1547
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3377811.3380442&domain=pdf&date_stamp=2020-10-01

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ma and Chen, et al.

on not only the reported project but also its downstream project(s)
is called cross-project bug. Cross-project bugs are not uncommon
in practice. Ma et al. identified hundreds of instances from the
scientific Python ecosystem [21]. After inspecting the fixing pro-
cess of cross-project bugs and conducting an online survey, they
reported that compared with intra-project bugs, such bugs have
much more severe impact and are extremely more difficult to deal
with. Unlike single-project development, different projects within
a software ecosystem are developed and maintained separately and
asynchronously, thus fixing of a cross-project bug locally is usually
not the end of its impact on other projects. Not until a patched
version of the upstream project is released will the downstream
projects get rid of the bug [9]. Then if the published fix is not satis-
factory, the affected projects have to wait for another release cycle
to get a new fix, which enlarges the bug impact and requires extra
efforts. Therefore, the upstream developers are very cautious when
facing a cross-project bug, and they are willing to seek advice from
their dependent projects. But even so, the proposed bug-fixes are
sometimes unsatisfactory.

Take the aforementioned bug (scipy/scipy#1547) as an example.
The function scipy.ndimage.interpolation.affine_transform() ap-
plies an affine transformation on a given array. It will produce
wrong results when the parameter matrix is a diagonal-matrix
and the parameter offset is not (0, 0). Fixing the buggy method
requires changing the output interface and hence might break
some downstream projects. Scipy’s developers were very cautious
about how to repair the bug. They asked Scikit-image’s developers
for feedback because they thought that Scikit-image would have
called the method frequently. After a lengthy inspection of their
code, Scikit-image’s developers reported that there is no use of
affine_transform() that satisfies the failure triggering conditions
and hence the bugmay not concern their project. Still, Scikit-image’s
developers provided several suggestions and the bug was eventu-
ally fixed after lengthy debate. Unfortunately, six months later, a
developer of Nilearn reported that they were unhappy about the fix
since it broke their code without any warning and they spent much
effort in debugging the problem tracing back to the problematic fix.
From the discussion, Scipy’s developers were completely unaware
of the fact that Nilearn was using the functionality until then.

The real-world example discloses that it is difficult to provide an
appropriate fix if the upstream and downstream sides are unclear
about the possibly affected downstream code before starting to
design a fix. In other words, in order to repair a cross-project bug
effectively and efficiently, it is important to determine its impact.
However, it is challenging in software ecosystems with numer-
ous projects and project versions. For the upstream side where a
bug occurs, the developers may have no idea which downstream
projects are using the buggy function, making it very difficult to
solicit bug fix suggestions from the downstream developers. For
the downstream side, as a Scikit-image’s developer pointed out,
they themselves are not sure whether and how much an upstream
bug affects their projects unless they comb through the code and
figure out how they call the upstream function everywhere they
use it. It is time-consuming and error-prone. Thus, some truly af-
fected projects like Nilearn may not realize the impact until the
projects fail by the bug or its fix, which, however, is too late for the
downstream developers to give advice or take part in the fixing.

It is not hard to see that analyzing cross-project bug impact
requires lots of painful manual efforts. Therefore to alleviate the
problem, we present an ecosystem-wide bug impact analysis to
identify the affected downstream modules (classes/methods) of a
given upstream bug. Note that an upstream function containing the
bug is invoked in a downstream module does not mean the bug in
the function must be triggered as the failure inducing preconditions
may not be present in the downstream project. Hence, our goal is
to find out all the truly impacted downstream uses from the huge
number of modules within an ecosystem, so that the proposed
upstream fix is more likely to satisfy all its affected downstream
developers. Specifically, a downstream module is truly impacted
if the failure inducing preconditions of the upstream bug can be
satisfied in the downstream module such that the buggy logic can
be triggered, leading to corrupted states. For a reported bug with
the known root cause function and failure inducing preconditions,
we first collect the candidate downstream modules based on an
ecosystem-wide dependence analysis. Then, a conservative path-
sensitive intra-module impact analysis is performed by encoding the
paths to the call sites of the buggy upstream function, together with
the preconditions, as symbolic constraints. Solving the constraints
discloses if the downstream module can be affected.

We evaluate the approach on the scientific Python ecosystem.
We have collected 31 cross-project bugs from projects Numpy and
Scipy in this ecosystem that have at least one confirmed affected
downstream project. We then analyze 22 popular projects in 121
different versions in the ecosystem, with a total of 16 millions LOC
to identify the impact of these bugs. From 25490 modules that are
using the buggy methods, our technique identifies totally 1132 mod-
ules that are affected by these bugs, saving 95.6% inspection efforts
for the developers (to check the bug impact). Our analysis is con-
servative in the sense that if it concludes a module is not affected,
the module must not be affected. Although it may have false posi-
tives due to the conservative symbolic encoding, our experiments
show that the average false positive rate is only 7.9%. Among the
1132 modules reported by our tool, only 47 were reported before.
Our technique is also efficient. The mean time for estimating every
module is only 0.860 seconds.

The ecosystem-wide bug impact analysis is useful for both the
upstream and downstream developers in helping them fix cross-
project bugs effectively and efficiently, as well as minimizing the
bug impact on the entire ecosystem. For the buggy upstream project,
once a bug occurs, our approach can tell the developers which down-
stream projects and how much they are likely to be influenced by a
given bug so that they can communicate with the affected projects,
especially the most important ones, to understand the downstream
requirements, determine the priority of the bug, and decide the
ultimate solution. For a downstream project, our approach can tell
the developers whether it might be influenced by a given bug and
point out all the possibly affected modules (methods or classes),
preventing to report duplicated bugs [26]. The approach saves the
developers’ effort by directing their inspection towards these mod-
ules. After inspecting the affected code, the developers can even
choose to work around the bug, without waiting for the upstream
fix. They can also learn the possible workarounds from the sibling
projects affected by the same bug [14].

101

Impact Analysis of Cross-Project Bugs on Software Ecosystems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Scipy

Amico

Pandas

Matplotlib

SKlearn

Dask

SKimage

Nilearn

msmtools

librosa

mne

Aplpy

Astropy

Nengo

numpy.unique()

scipy/scipy#3330

Ipython

Sympy

Sunpy

Poliastro

Synphot

Figure 1: The impact of a bug in numpy.unique(). The central
point denotes numpy.unique(), the surrounding dots of differ-
ent colors mean the modules of different projects, and the
lines indicate the calls from these modules to numpy.unique().
The five projects Ipython, Synphot, Sunpy, Sympy, and Po-
liastro have no use of numpy.unique(). The red dots are the
modules potentially affected by numpy/numpy#2655.

2 MOTIVATING EXAMPLE
In this section, we use a real case in the scientific Python ecosystem
to illustrate the problem and motivate the design of our approach.

Numpy is a fundamental library in the scientific Python ecosys-
tem, with more than 200,000 projects relying on it. Fig. 1 shows a
small part of the dependencies including 19 projects such as Sunpy
and Synphot. The function numpy.unique() was reported to produce
wrong results when the first parameter ar is an array with more
than 16 items and the parameter return_index is set to be True (re-
ported in numpy/numpy#2655). To analyze the impact of this bug
on the 19 projects, we first have to identify which of them are using
numpy.unique(). A direct way is to analyze the call relationships
between the downstream projects and the buggy Numpy function.
By inspecting the code, 14 of the 19 projects in Fig. 1, with totally
453 modules (functions or classes), are found to call numpy.unique()
in various ways. The central point in Fig. 1 denotes numpy.unique(),
the surrounding dots of different colors mean the modules of dif-
ferent projects, and the lines indicate the calls from these modules
to numpy.unique().

However, not all these modules are affected by the upstream bug,
depending on the bug inducing preconditions. For example in Li-
brosa, though the function librosa.core.fmt() calls numpy.unique(),
it uses the default value 0 of parameter return_index. As such, the
bug has no effect on this module. Thus, picking out the affected
ones requires an analysis on how the downstream modules use the
erroneous upstream function, or more specifically, which down-
stream uses satisfy the bug inducing preconditions. After reviewing
the code, 11 modules from the projects Mne, Skimage, Nilearn, Pan-
das, Scipy, Matplotlib, Astropy, and Amico call numpy.unique() in
the bug-triggering way, i.e., with len(ar)> 16 and return_index

== True , and thus are affected by numpy/numpy#2655 (shown as

red dots in Fig. 1). It is also worth noting that Scipy’s developers
have reported the impact in scipy/scipy#3330.

The motivating example illustrates two key problems which we
have to tackle when analyzing the ecosystem-wide impact of a
cross-project bug with known erroneous method and bug inducing
preconditions. First, which dependent modules are using the buggy
upstream method? Second, which downstream uses may satisfy the
bug inducing preconditions?

For the first problem, it is natural to leverage a cross-project
call graph to solve it. However, the dynamics and complexity of
software ecosystems give rise to many new challenges. As an open
environment, new projects may join in an ecosystem at any time
by simply importing and using a library within the ecosystem.
Therefore, the cross-project call graph should be extended flexibly
to include new projects in order to gain a full-scale impact analysis.
At the same time, the extension should only induce local changes,
without interfering with most of the existing graph structure so
that there is no need to reconstruct the ecosystem-wide call graph,
which incurs high overhead especially for large ecosystems.

Moreover, the graph shall be version aware, modeling multi-
ple versions of a project as long as they are still used by some
downstream projects. Specifically, a buggy upstream function may
only be used by some specific versions of a downstream project.
For example, the motivating example numpy/numpy#2655 which
came up in Numpy <1.8.0 does not affect Scipy 1.2.0 which requires
Numpy >=1.13.3.

Taking into account the requirements of scalability, flexibility,
and version-sensitivity, we leverage a dependency analysis to ex-
tract cross-project call relationships between the upstream func-
tions and the downstream modules (functions or classes). It can
precisely identify the particular versions of a downstream project
that is affected by an upstream function, and the versions of the
upstream project that a downstream project uses. After the anal-
ysis, the candidate modules which are using concerned upstream
buggy functions can be identified. Note that although our technique
can traverse dependences within the whole ecosystem, the identi-
fication of dependences is performed in a modular fashion. That
is, our algorithm constructs cross-project dependences for each
project separately. Such a design is critical to handling the dynamic
evolution of an ecosystem. More details can be found in Section
3.2.

For the second problem, processing of individual candidate mod-
ules (in downstream projects) is needed to determine whether a
module invokes the buggy function in the failure inducing fashion.
Considering the number and diversity of candidate modules, sev-
eral requirements arise when proposing a method for selecting the
bug-triggering downstream uses.

Efficiency. Within a software ecosystem, the number of can-
didate downstream modules identified from the cross-project call
graph may be large, especially for a popular upstream function (e.g.,
453 modules in the aforementioned case). Since cross-project bug
impact analysis is supposed to be used before designing the bug
fixes, the analysis on individual modules should be completed in a
short time in order not to hold up the fixing process.

Complete Coverage. The analysis is supposed not to miss any
affected downstream module so that the upstream fix is more likely
to satisfy all their downstream users. Therefore, for each module,

102

https://github.com/numpy/numpy/issues/2655
https://github.com/scipy/scipy/issues/3330#issuecomment-36071034

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ma and Chen, et al.

the designed method should examine every possibility of input
for invoking the buggy function in order to decide whether it is
affected or not. Therefore, simply running the downstream tests is
insufficient since downstream projects may not have test cases to
expose upstream bugs even though they may have consequences.

Considering the above requirements, we develop a conserva-
tive path-sensitive intra-module symbolic analysis to determine
whether the values of input parameters of an upstream function
invocation meet the failure inducing preconditions. Specifically, we
analyze the candidate (downstream) modules and encode paths to
the call sites of the upstream function in symbolic constraints. By
asserting the conjunction of these constraints and the failure induc-
ing preconditions, we can tell whether the downstream modules
are affected.

Our technique is not a symbolic execution engine which explores
individual paths and encodes one single path at a time. Instead, our
technique encodes all the paths reaching the upstream function call
sites at once, without any path exploration. Furthermore, symbolic
execution usually can achieve precise encoding as it encodes con-
crete paths, in which all the dynamic features are unfolded (e.g.,
dynamic types of variables are known), whereas our encoding is
conservative due to the lack of concrete information. In the next
section, we show the design of our ecosystem-wide bug impact
analysis in details.

3 METHOD DESIGN
3.1 Overview
Fig. 2 presents the overview of our approach, which consists of
two main phases: 1) the ecosystem-wide dependence analysis to
select downstream module candidates that call the upstream buggy
methods and 2) the intra-module impact analysis to identify the
affected modules that may meet the bug inducing preconditions.

The goal of the ecosystem dependence analysis is to construct
a version-sensitive dependence network over the target ecosys-
tem, which is accomplished by the dependence analyzer and the
version handler. Within the target ecosystem, each project is pro-
cessed independently to better handle the dynamic evolution of
the ecosystem and to achieve scalability. First, for each project,
with a base version of the project as the input, the dependence
analyzer leverages fine-grained function invocation relations to
construct a base dependence network. Then, the version handler
processes successive versions of the project incrementally by com-
paring function call changes to add version specific information
to the network. Note that while the network is stored as a central
database, its construction and update are modular and distributed
to individual projects. Hence, when a project is updated, only the
dependences related to the project may be updated. Such a design
substantially reduces the maintenance overhead. As shown in Sec-
tion 4.3.2, the size of the network for part of the scientific Python
ecosystem is only 248.4MB and hence very manageable. Given an
upstream buggy function, the module selector can easily identify
the candidate downstream modules using the dependence network.

The intra-module impact analysis takes three resources as in-
puts, i.e., individual candidate modules, a buggy upstream function,
and the failure inducing preconditions extracted from bug reports.
It analyzes each candidate and identifies whether the candidate

is truly affected. We say a module is truly affected if with some
legitimate inputs to the module, the bug in the upstream function
can be triggered. Specifically, the intra-module analysis consists
of three subcomponents: the code preprocessor, the constraint en-
coder, and the SMT solver. The code preprocessor reduces code
with rich syntax to a simple canonical form. The constraint encoder
symbolically encodes paths to call sites of the upstream function
as well as the failure inducing conditions. The constraints are then
passed to the SMT solver. If it is satisfiable, the analyzed module is
considered affected.

3.2 Ecosystem-wide Dependence Analysis
The dependence analysis processes each project in the ecosystem
seperately. Consider a software eocsystem SE which consists of
n projects. Being a member of the ecosystem, a project 𝑃𝑖 (0 ≤
𝑖 ≤ 𝑛) in SE plays two roles. As a downstream project, 𝑃𝑖 uses the
functionalities provided by another project 𝑃 𝑗 (0 ≤ 𝑗 ≤ 𝑛 ∧ 𝑗 ≠ 𝑖),
and the cross-project call relations form a directed inter-project
dependence graph 𝐺 (𝑃𝑖) =< 𝑉𝑓 𝑟𝑜𝑚, 𝑉𝑡𝑜 , 𝐸 >, where 𝑉𝑓 𝑟𝑜𝑚 is a
set of source nodes representing modules (classes or functions) in
𝑃𝑖 , 𝑉𝑡𝑜 is a set of target nodes representing functions defined in
project 𝑃 𝑗 and called by 𝑃𝑖 , and 𝐸 ⊆ 𝑉𝑓 𝑟𝑜𝑚 ×𝑉𝑡𝑜 is a set of directed
edges representing the call relations. In the remainder of the section,
we use𝑚 ∈ 𝑉𝑓 𝑟𝑜𝑚 to denote a downstream module and 𝑓 ∈ 𝑉𝑡𝑜 to
denote an upstream function. On the other hand, as an upstream
project, the functions defined in 𝑃𝑖 can be used by 𝑃 𝑗 and thus
serve as the target nodes in𝐺 (𝑃 𝑗). Therefore, for any project in SE,
the dependence analysis cares about its function definitions and
inter-project call relations.

In order to identify which versions (of a downstream project) are
affected by a cross-project bug in a specific upstream version, we
analyze multiple releases of each project. Assume 𝑃𝑖 has k versions,
i.e.,𝑉𝑖0,𝑉𝑖1, ..., and𝑉𝑖𝑘 . We first choose a version (such as the oldest
version𝑉𝑖0) as the base to extract the inter-project call dependencies
and construct a base graph. To represent version information, an
attribute tf is maintained for each function 𝑓 , which is defined
as a tuple to indicate the first and last versions where 𝑃𝑖 has 𝑓 .
Meanwhile, a hash table c is constructed for each (cross-project)
call edge 𝑒 =𝑚 → 𝑓 ∈ 𝐸. The table maps a specific version of𝑚 to
a range of versions of 𝑓 , indicating the version range of 𝑓 on which
𝑚 in that version depends. For example in Fig. 3, the hash table on
the edge denotes that𝑚 in the 𝑉𝑖0 version of 𝑃𝑖 calls 𝑓 in versions
𝑉𝑗1 to 𝑉𝑗5 of 𝑃 𝑗 ;𝑚 in the 𝑉𝑖1 version of 𝑃𝑖 calls 𝑓 in versions 𝑉𝑗2 to
𝑉𝑗5 of 𝑃 𝑗 ; and so on. Note that 𝑓 .𝑡 𝑓 [1] is 𝑉𝑗5.

After all the n projects in the ecosystem SE are analyzed, the
generated individual graphs 𝐺 (𝑃1), 𝐺 (𝑃2), ..., 𝐺 (𝑃𝑛) are combined
to form the ecosystem-wide dependence network G(SE) by merging
the same nodes, i.e, 𝐺 (𝑆𝐸) =< 𝐺 (𝑃1), 𝐺 (𝑃2), ... , 𝐺 (𝑃𝑛) >, where
𝑃1, 𝑃2, ..., and 𝑃𝑛 ∈ SE. Next, we introduce the base graph construc-
tion and the version analysis.

3.2.1 Base Graph Construction.

The base graph of a project is built by the dependence analyzer,
which consists of three subcomponents: the AST parser, the filter,
and the dependence graph storage. It processes the base version of
every project independently.

103

Impact Analysis of Cross-Project Bugs on Software Ecosystems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Ecosystem Dependence Analysis

Failure Inducing PreconditionsIntra­module Impact Analysis

Dependence Analyzer

Constraint SolverAffected Downstream Modules Code Preprocessor

Software Ecosystem

...

...

...

Module Selector

Version Handler Version­sensitive Ecosystem­wide
 Dependence Network

...

Constraint Encoder

Candidate Downstream ModulesIndividual Projects Base Graphs Versioned Graphs

fn

...

...

Buggy Upstream Function

Figure 2: The workflow of our approach

Upstream project Pj

Function f: f.tf = (Vj0 ,Vj5)

e

Downstream project Pi

Module m

e.c = {
 Vi0 : (Vj1, f.tf[1]),
 Vi1 : (Vj2, f.tf[1]),
 Vi2 : (Vj2, f.tf[1]),
 Vi3 : (Vj2, f.tf[1])
 }

Figure 3: Versioning the upstream and downsteam projects

165
3318

3281
3282
3383
3384
3385

import numpy as np
def ttest_rel(…):

…
dm = np.mean(d, axis)
denom = np.sqrt(v / n)
with np.errstate(…):
t = np.divide(dm, denom)
t, prob = _ttest_finish(df, t)

(a) Code snippet

numpy.sqrt
numpy.mean

numpy.errstate

scipy.stats.ttest_rel numpy.divide

(b) Corresponding call dependencies

Figure 4: Inter-project call graph for scipy.stats.ttest_rel()

Given the base version 𝑉𝑖0 of project 𝑃𝑖 , the AST parser first
parses the source code into Abstract Syntax Trees (ASTs). The func-
tion call entities are further analyzed to extract the callers and
callees. Since we focus on the cross-project impact of erroneous
upstream functions, we only concern the inter-project call rela-
tions, that is, only the callees defined in other projects need to
be retained. To do this, we employ a filter to preclude the callees
defined within the project based on the import commands, the class
definitions, and the function definitions. Fig. 4 illustrates a simple
example of extracting the dependency relation. As shown in Fig.
4a, the function ttest_rel() in the project Scipy calls np.mean(),
np.sqrt(), np.errstate(), np.divide(), and _ttest_finish() at line
3181 to line 3185. Since __ttest_finish() is defined within Scipy,
it is not of interest in this study and thus is precluded from the
following analysis. Fig. 4b shows the corresponding inter-project
call dependencies.

Meanwhile, the function definition entities are also recorded
since they are likely to be the target nodes of the graphs for other
projects.

3.2.2 Version Analysis.
When constructing the base graph for project 𝑃𝑖 of the 𝑉𝑖0 version,
the value of tf (i.e., the version range in which a function is available

in 𝑃𝑖) and the entries of c (i.e., hash table on edge 𝑒 = 𝑚 → 𝑓)
are initialized as (𝑉𝑖0, 𝑉𝑖0) and {𝑉𝑖0}, respectively. To obtain the
corresponding value of c, we first try to acquire the information
from the configuration files (such as the setup.py in Python projects)
in 𝑃𝑖 , which may indicate the lower and upper bounds of depending
versions of the upstream projects. However, such information may
be incomplete due to the lack of configuration files or not specifying
versions in these files. In such cases, the lower/upper bound is the
first/latest version of the upstream project 𝑃 𝑗 which contains f with
the exact same interface. For the example in Fig. 3, e.c is initialzied
as {𝑉𝑖0: (𝑉𝑗1, f.tf[1])}, where 𝑉𝑗1 is obtained from the configuration
file and f.tf[1] is the lastest version of 𝑃 𝑗 containing f.

After the base graph is built, the version handler updates the
values of tf and c by comparing two subsequent versions of project
of 𝑃𝑖 incrementally. The version handler consists of two subcom-
ponents: the code comparator to identify the differences between
two versions, and the version updater to add version information
to base graphs.

From version 𝑉𝑖1 to the latest version 𝑉𝑖𝑘 , the code comparator
compares the ASTs between 𝑉𝑖𝑝 and𝑉𝑖 (𝑝−1) (1 ≤ 𝑝 ≤ 𝑘). It records
four kinds of changes: function call deletion, function call insertion,
function definition deletion, and function definition insertion. These
changes are sent to the version updater to update the values of tf
and c.

Updating tf.When a new function is defined in the𝑉𝑖𝑝 version,
its tf is initialized as (𝑉𝑖𝑝 , 𝑉𝑖𝑝). If an existing function is deleted
from 𝑉𝑖𝑝 , its tf remains unchanged. For other functions in 𝑉𝑖𝑝 , the
second item of their tf is updated from 𝑉𝑖 (𝑝−1) to 𝑉𝑖𝑝 .

Updating c. In the version 𝑉𝑖𝑝 of project 𝑃𝑖 , if its module m is
modified so that it no longer calls the upstream function f, the hash
table on edge 𝑒 from𝑚 to 𝑓 does not need to be updated. Otherwise,
an entry is added to 𝑐 to denote the invocation in version 𝑉𝑖𝑝 . In
Fig. 3, since version 𝑉4 the call from m to f is deleted, 𝑐𝑖 has four
entries, denoting versions 𝑉𝑖0, 𝑉𝑖1, 𝑉𝑖2, and 𝑉𝑖3. The values for new
entries are obtained from the configuration files or 𝑓 .𝑡 𝑓 as described
above.

After all the versions are processed, the values of tf and c are
obtained, and the version-sensitive dependence network is con-
structed once every interested project is analyzed. With the net-
work, we can tell in which versions a downstream module is invok-
ing an upstream buggy function of a specific version.

The dependence network serves as a database for the whole
analysis. The incremental processing of code indicates that the

104

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ma and Chen, et al.

dependence network can be easily updated with code changes of a
project. Anytime a developer commits some change, the network
can be easily modified accordingly without interfering with other
projects that do not have direct dependences. Moreover, with the
version information, the network can show the profile of inter-
project dependency relationship of a software ecosystem at any
interesting point of time. Last, the network features the capabilities
of dealing with ecosystem dynamics (i.e., projects join and leave).

After the ecosystem-wide dependence network is constructed,
for a given cross-project bug with known root cause buggy function,
the candidate selector identifies all the downstream modules which
are using the buggy upstream function. Then the candidates are sent
to the intra-module impact analyzer one by one to check whether
they are truly affected.

3.3 Intra-module Impact Analysis
The intra-module impact analysis symbolically encodes each mod-
ule to assess whether the given upstream buggy function can be
invoked with the failure inducing preconditions. Specifically, for
each concerned downstream module, the analyzer first utilizes the
code preprocessor to normalize the module code, and then it re-
places the body of the buggy function with a simple check of the
failure inducing conditions. Then, the constraint encoder encodes
the possible paths from the module entry to the call sites of the
buggy upstream function. Last, all the constraints including the en-
coded failure inducing conditions are sent to the constraint solver.
A module is affected by the bug if the result obtained from the
solver is satisfiable.

3.3.1 Code Preprocessing.

a) Code normalization.
In a source code file, one source code line may contain multiple
statements and a long statement may cross multiple lines. For the
simplicity of the subsequent analysis, we first normalize the down-
stream module so that each line only contains a simple operation.
While such normalization is well supported in languages such as
C/C++ and Java (e.g., through compiler IR), it is lacking for our tar-
get language Python. As such, we develop our own normalization
methods. The following two kinds of normalization are currently
performed.

Linearizing nested expressions.Nested expressions combine multi-
ple operations together (e.g., foo(a)+ b). We linearize these nested
expressions as a set of simple assignments, each containing a simple
expression.

Simplifying complex constructs. Python provides expressive syn-
tax to represent complex semantics concisely. Despite of its conve-
nience for developers, it brings difficulties for analysis. The code
preprocessor transforms several kinds of advanced constructs to
a small set of basic operations. Fig. 5 illustrates how we process
"list comprehension" in Python as an example. The statement "x
= [i+1 for i in range(5) if i%2==0]" shows a concise method to
construct a list, which is transformed into several basic statements,
such as a for statement that contains an if statement.

b) Code integration.
After normalizing the downstream code, the code preprocessor
abstracts the buggy upstream function to a simple check of the

x = [i + 1 for i in range(5)

if i % 2 == 0]

1 x = []

2 for i in range(5):

3 if i % 2 == 0:

4 tmp = i + 1

5 x.append(tmp)

Figure 5: Simplifying list comprehension

failure inducing conditions, which is sufficient for our purpose. The
procedure is shown in Fig. 6 and explained as follows.

First, the code preprocessor only retains the interface of the
upstream function upfunc(), and replaces its body with an if-else
statement. The failure inducing preconditions obtained from the
bug report act as the conditions of the if-else statement. Then, the
code preprocessor retains the body of the downstream module
downfunc() from the first line to the call sites of the buggy upstream
function. It modifies the statement at the downstream call site by
replacing the original return target variable as tmpResult (or adding
the target variable if there is not one). An example of the resulting
code is shown in Fig. 6c. It is then sent to the symbolic encoding
component.

3.3.2 Symbolic Analysis.

a) Input variables initializing.
For dynamic programming languages like Python, the static type
information of variables is not explicitly indicated. A specific input
variable of a module can be of different data types. For example,
the project Numpy specifies that the input parameter axis of its
function numpy.nanpercentile() can be an integer, a list of integers,
or None. This poses challenges to symbolic analysis, in which sym-
bolic variables need to be explicitly typed. To handle such situation,
we use multiple symbolic variables of different types to denote
the value of an input variable x. For a statement s involving x, all
the symbolic variables representing x are updated to encode the
possible behavior of s along with the different types of x.

b) Constraint encoding.
The constraint encoder symbolically encodes possible paths from
the module entry to the call sites. During encoding, it transforms
each path into its single static assignment (SSA) form so that every
variable is defined exactly once. Next we describe how we encode
several typical constructs.

Assignments. For a constant assignment x = v (v represents a
typical object literal including the number, string, list, etc.), the
encoder transforms it into the SSA form and encodes it to con-
straints. For a simple assignment x = y, the encoder looks for the
most recent definition of y. If it is found, the encoder first resolves
the definition and then encodes it after transformation to the SSA
form. Otherwise, we initialize y with multiple symbolic variables of
different types. For binary operation such as x = y + z, the encoder
processes it similarly.

1

…

 def upfunc(arg1, arg2, …):

function body

1

2
3
4
5

7
8

k+5

 def upfunc(arg1, arg2, …):

 if conditions:
 return 1
 else:
 return 0

statement 1
statement 2
…
tmpResult = upfunc(p1, p2, …)

c) Resulting code to be encoded:

1

2
3
…
k

 def downfunc(arg1, arg2, …):

statement 1
statement 2
…
a = upfunc(p1, p2, …)

a) Upstream buggy function:

b) Downstream module to be analyzed:
extracted from

bug reports

1

1

1

2

3

1

Figure 6: The procedure of code integration

105

Impact Analysis of Cross-Project Bugs on Software Ecosystems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Calls. To ensure the efficiency of impact analysis, the encoding
is performed within the target module. As the module may call
other functions in addition to the buggy upstream function, we
manually provide symbolic models for a set of commonly used
library functions. Note that this is normal in symbolic analysis. We
resolve other calls to un-modeled external functions in a conser-
vative way. We assume these functions can change the values of
their input parameters and return any value of any type. Therefore,
for a statement x = f(p1, ..., pn), the return target variable x

and input variables pi (1 ≤ 𝑖 ≤ 𝑛) are reinitialized with multiple
symbolic variables of different types. In this way, our analysis is
conservative, meaning that if a buggy upstream function can affect
a downstream module, our tool must report it. We consider this to
be more desirable than a typical aggressive no-false-positive strat-
egy in symbolic bug finding as identifying the potentially affected
downstream modules is critical for upstream bug fixing. In Section
4.3, our results show that even though our analysis is conservative,
it allows pruning 95.6% of the downstream modules that invoke the
buggy functions.

Conditionals. For a branch if conditions 𝑆1 else 𝑆2, we first resolve
the predicate and then aggressively process each statement of 𝑆1
and 𝑆2. During encoding, paths are classified into two categories:
dead-end and active. A dead-end path goes into a direction that
can not reach the call sites of the buggy upstream function and
thus is discarded during encoding. An active path can lead to the
concerned point. We only encode the active paths.

Loops. We unroll all the constant loops to their bounds. For a
loop with variable bound (e.g., while loops), we unroll it 10 times.
To be conservative, in the else branch of the last round of unrolling,
we re-initialize all the variables.

Example. Consider the example in Fig. 7 where uf() is the
buggy upstream function. The constraint encoder aims to encode
the path to the call sites of uf() (at line 7) within the module. It
first transforms each statement into its SSA form before encoding.
At Line 2, since the encoder does not find a definition of k (k is
the input parameter of the module), it initializes k with multiple
symbolic variables of different types, such as integer and string.
Due to the unsupported addition operation between an integer
and a string, the symbolic variable of the string type is discarded
from the following analysis. At line 3, an external function ef()

is called. The encoder encodes m and b with variables of multiple
types like k. For the if statement at line 4, the predicate is resolved
and two paths are generated with the constraints m > k and m <= k

separately, with the former path not containing line 7. Therefore,
lines 1, 2, 3, 6, and 7 form the only active path to uf() within the
module and only the constraints along this path, together with the
failure inducing preconditions, are then sent to the SMT solver.

c) Condition types.
During symbolic execution, the failure inducing preconditions are

1
2

3

4
5
6
7

m = 5
a = 7 + k

b = ef(m, 3)

if m > k:
 p = b
else:
 p = uf(a, m)

 Initialize k: newInt() and newStr()

 Discard: k of newStr()

 Reinitialize m, b: newInt() and newStr()

 Discard: the deadended path 1-2-3-4-5

Figure 7: An example for encoding

also encoded. Through inspecting a number of cross-project bugs
in the scientific Python ecosystem, we summarize three kinds of the
most common conditions under which upstream buggy functions
will exhibit unexpected behaviors.

Type condition. A bug will occur when the type of a certain input
parameter for the upstream function falls out of an acceptable set.
For example, the function numpy.fix() can not correctly process a
scalar, which means that when the input parameter x is an integer
or a float, the bug will be triggered (numpy/numpy#8993).

Value condition. A bug will occur when the value of a certain
input parameter for the upstream function falls out of an accept-
able range. For example, the Numpy’s function numpy.percentile()

breaks when the input parameter interpolation is set to 'midpoint'
(numpy/numpy#7163).

Property condition. A bug will occur when some property of
a certain input parameter for the upstream function falls out of
an acceptable range. For example, the function numpy.unique() in
Numpy returns wrong results when it processes an array with more
than 16 items (numpy/numpy#2655).

We currently support the three kinds of failure inducing pre-
conditions and their combinations. For such bugs, our proposed
method reports no false negatives due to its conservative nature.
Wemanually extract the conditions from bug reports and send them
in canonical forms to the code preprocessor before encoding. Then
all the constraints collected along the active paths including the
encoded conditions are passed to the solver. If the solver reports
SAT and the value of the variable tmpResult is one, we decide that
the subject downstream module is possibly impacted by the given
upstream bug. The impact-triggering input can also be obtained.

4 EVALUATION
We implemented our approach in a prototype tool in Python. Since
Python programs are likely to use a number of external functions
and classes implemented in other languages, we manually mod-
eled some commonly used external functions by rewriting them in
Python. We used Z3[8] as the SMT solver. We conduct an experi-
ment on the GitHub scientific Python ecosystem to evaluate our
approach.

4.1 Research Questions
We attempt to address the following research questions:

RQ1:How effective is our approach in finding the affected
downstream modules? For this question, we examine what per-
centage of the downstream modules using an upstream buggy
method is identified to be affected by a confirmed cross-project
bug. We also check the false positives of the identified modules.

RQ2: How efficient is our approach? To answer this research
question, we monitor the time used to extract the inter-project call
dependencies, and the time to analyze the intra-module impact.

4.2 Dataset
In order to answer the above research questions, we evaluate our
approach on a set of cross-project bugs which were confirmed to
affect some downstream modules. These bugs were collected man-
ually by three steps. First, we focused on two fundamental libraries

106

https://github.com/numpy/numpy/issues/8993
https://github.com/numpy/numpy/issues/7163
https://github.com/numpy/numpy/issues/2655

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ma and Chen, et al.

Figure 8: An automatic hint indicating that the issue pandas-
dev/pandas#12917 reported to the project Pandas is related
with the Numpy bug numpy/numpy#7163.

in the scientific Python ecosystem, i.e., Numpy [10] and Scipy[11].
They are the core projects used by nearly all the other projects
within the ecosystem, so the bugs occurring these projects are very
likely to affect other projects. Among the closed bugs reported
for the two libraries, we selected all those which had at least one
explicit link with issues reported for other projects. The link may
be shown in the comments of the bug report, such as "Bug found by
testing astropy – see astropy/astropy#3848" in numpy/numpy#5962’s
comments, or an automatic hint in the bug page (shown in Fig.
8). Second, for each selected bug, we examined whether its linked
downstream issues were caused by the bug through reading the bug
reports and the comments. If so, the bug was confirmed as a cross-
project bug, and the linked downstream projects were considered
affected. Third, for each cross-project bug, we recorded its buggy
function, failure inducing preconditions, and the affected down-
stream modules. Excluding the bugs which we could not identify
all of the three kinds of information, we collected 31 cross-project
bugs in total, involving 22 downstream projects belonging to the
scientific Python ecosystem.

We extract the call dependencies from a total of 121 version of
the 22 projects to construct an inter-project dependence network.
The dependence network is stored in MySql and the candidate
downstream modules are selected through query statements. We
select the 22 projects because the 31 cross-project bugs that we
manually studied were confirmed to affect them. Therefore, they
can be used as a baseline to validate whether our approach can
identify the truly affected downstream modules. Note that our
evaluation only involves 22 projects because we have to manually
check the results produced by our tool, which costs much effort
and limits the number of evaluated projects.

4.3 Results
4.3.1 Effectiveness (RQ1).
Table 1 shows our experimental results within the sub-ecosystem.
The column Bug indicates the bug id in the GitHub issue tracker.
The prefixes N and S mean the bug is from Numpy and Scipy,
respectively. The second and third columns show the number of
candidates which are using the buggy upstream functions and the
number of affected downstreammodules identified by our tool from
other 21 projects. The column %affs shows the percentage of the
affected downstream modules over all candidates.

For the 31 cross-project bugs, our approach first filters down-
stream modules that do not call buggy upstream functions through
an ecosystem-wide call graph, leaving 25490 candidates for intra-
module symbolic analysis. Then, the number of affected modules
identified by our technique ranges from 3 to 262, with a total num-
ber of 1132 and an average number of 36.5. The percentage of
impacted modules ranges from 1.08% to 100%, with an average of
33.5%. For 18 bugs, the affected modules are less than 30.0% of all
the modules using the buggy upstream methods (highlighted in

Table 1: Statistics of Experimental Results

Bug #cans #affs %affs #FPs P #constraints time(s)
max. avg. avg. total

N#2056 15 6 40.0% 0 100% 22 17.0 0.428 22.4
N#2655 1357 37 2.73% 5 83.3% 464 13.5 0.385 535
N#3484 90 5 5.56% 0 100% 120 26.7 0.948 94.3
N#4225 30 13 43.3% 5 61.5% 14 6.22 0.328 24.8
N#5251 15 6 40.0% 0 100% 30 12.8 2.37 45.6
N#5300 151 26 17.2% 3 88.5% 184 23.8 0.353 68.3
N#5655 330 36 10.9% 0 100% 136 8.42 0.817 288
N#5672 10 3 30.0% 0 100% 49 29.0 0.906 34.1
N#5766 13 3 23.1% 0 100% 14 8.25 0.622 18.1
N#6238 9803 220 2.24% 4 86.7% 702 7.37 0.992 9734
N#6590 159 14 8.81% 0 100% 1134 44.2 0.610 107
N#7163 122 15 12.3% 0 100% 1282 43.6 0.677 93.6
N#8220 3 3 100% 0 100% 19 19.0 0.391 11.2
N#8340 19 8 42.1% 0 100% 73 22.7 0.501 22.6
N#8409 17 5 29.4% 0 100% 68 20.3 0.482 17.8
N#8516 1710 262 15.3% 5 83.3% 5664 26.7 0.985 1654
N#8600 24 9 37.5% 2 77.8% 102 32.8 0.969 35.6
N#8974 76 21 27.6% 5 76.2% 32 4.50 0.124 23.7
N#8993 19 14 73.7% 0 100% 244 60.0 1.73 42.9
N#9560 111 21 18.9% 3 85.7% 864 37.8 0.758 94.1
N#9874 183 39 21.3% 4 86.7% 156 16.8 0.434 99.3
N#10899 145 20 13.8% 5 75.0% 16 4.21 0.146 34.5
N#11103 9018 97 1.08% 3 90.0% 699 7.04 0.911 8245
N#11407 1893 198 10.5% 7 76.7% 50 9.96 0.378 736
N#11426 92 4 4.35% 0 100% 85 18.3 0.616 67.9
S#7278 3 3 100% 0 100% 6 6.00 0.312 10.9
S#7991 10 6 60.0% 0 100% 864 296 4.72 56.7
S#8118 19 9 47.4% 1 88.9% 54 13.0 0.323 19.3
S#8142 11 6 54.5% 0 100% 12 5.67 0.193 12.5
S#9103 7 7 100% 0 100% 9 4.50 0.133 10.9
S#9591 37 17 45.9% 1 94.1% 616 54.0 1.99 81.8

avg. 822 36.5 33.5% 1.71 92.1% 445 10.1 0.860 727

total 25490 1132 4.4% 53 88.7% — —

The column Bug indicates the bug id in the GitHub issue tracker. The prefixes N and
S mean the bug is from Numpy and Scipy, respectively. The second and third columns
show the number of candidates which are using the buggy upstream functions and
the number of affected downstream modules. The column %affs shows the percentage
of the affected downstream modules over all candidates. The column #FPs lists the
false positives for each bug and the column P shows the precision = 1 - #FPs/min(30,
#affs). The two columns of #constraints indicate the maximum and average numbers
of constraints collected from the module entries to the call sites of the buggy upstream
function across all the candidates. The column avg. of time(s) shows the mean time
that the intra-module impact analyzer needs to process a candidate module for the
bug.

Table 1). For the affected modules, the analyzer identifies the impact
by providing the inputs that can trigger the cross-project bugs. Due
to the conservativeness of the intra-module analysis, our approach
has 100% recall and the modules filtered out from the candidates
are ensured to be unaffected.

Among the 1132 identified downstream modules, only 47 mod-
ules have ever been reported in the past. The number of newly
found modules for the 31 bugs ranges from 1 to 260, with a to-
tal number of 1085. To examine the false positives of them, we
take three steps to decide whether they are indeed affected. For
each reported module, a test case is first generated with the inputs
provided by our tool. Then, we configure the upstream project to
the version where the cross-project bug happens and the down-
stream project to the version that our tool specifies. In addition,
other depending projects are also configured to the appropriate
versions for normal operation of the module. Last, we run the test
case and observe whether the values of the input parameters of the
buggy upstream function conform to the bug inducing precondi-
tions when the function is invoked. If so, the module is considered
truly affected; otherwise, the module is a false positive.

Due to the high cost of the examination, we can not validate
all 1085 modules. For the bugs with #affs ≤ 30, we examine all
the affected modules identified by our tool. For other bugs, we

107

https://github.com/scipy/scipy/issues/5962

Impact Analysis of Cross-Project Bugs on Software Ecosystems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 2: Number of Encoded Constructs in Various Types

FuncDef If Call While Assign AugAssign Return Others

22627 33921 271893 97 116094 1699 37910 126

randomly select 30 modules from the identified ones and ensure
each involved downstream project is under inspection. We totally
validate 470 modules. Table 1 shows the results. The column #FPs
lists the false positives for each bug and the column P shows the
precision = 1 - #FPs/min(30, #affs). It can be seen that the precision
of our approach is high, with an average of 92.1%. Apart from the
bug N#4225 with a precision of 61.5%, the precisions for other bugs
are not lower than 75.0%. Moreover, no false positives are found for
17 bugs (highlighted in Table 1). Bug N#4225 reports that Numpy’s
function numpy.log1p() returns a wrong result with the input as
an infinite number. For this case, the five false positives are all
found in the project Nilearn. The reported Nilearn modules call the
function numpy.empty_like() to randomly produce an array before
using numpy.log1p(). We cannot obtain an infinite number after
numpy.empty_like() is invoked when running the test cases, and
thus the failure inducing precondition cannot be met. However, we
did not model the behavior of numpy.empty_like() such that our
tool reports that an infinite number is possible.

Seen from Table 1, our method filters out a large number of
unaffected candidate modules that use the buggy methods. With
our tool, developers can save at most 98.9% (=1-1.08% for N#8993)
of the effort for a single bug by not inspecting the unaffected ones.
For 31 bugs, the developers save 66.5% (=1-33.5%) of the effort in
code review on average. The result means that our technique can
effectively help the downstream developers to focus their efforts
on a limited number of truly affected modules instead of wasting
time on inspecting a mass of modules immune to the bugs.

To gain a broader view of our symbolic anlysis, Table 2 lists the
number of various types of constructs that we encode, including
function definition, if statement, assignment, augmented assign-
ment, while statement, function call, return, and others (such as
try statement and raise statement). Totally, we symbolically encode
25490 candidate downstream modules with 327 KLOC. Among
those types of constructs, function calls are most frequently en-
countered, followed by if statements and assignments. Among these
callees, 46.9% are commonly used libray functions that we have
manually modeled, while others are resolved in the conservative
way as described in 3.3.2. Considering the high precision of our
approach, the considerable number of un-modeled function calls
do not result in too many false positives, indicating that the con-
servative processing of calls is suitable in bug impact analyis. It
ensures that the symbolic analysis is performed in a limited code
range for individual modules (e.g., 13 LOC per candidate module
on average) without much precision loss.

In addition to the number of encoded constructs of various types,
we also provide Fig. 9 to show the number of symbolic constraints
collected from each candidate module during impact analysis. Each
bar in Fig. 9 represents the number of modules in which the number
of collected constraints falls into the specific range. It can be seen
that paths to the buggy upstream functions in 42.3% of candidate
modules are encoded into 6 to 10 constraints.

1974

(7.7%)

10778

(42.3%)

3147

(12.3%)
3135

(12.3%)
2984

(11.7%) 1928

(7.6%)
1405

(5.5%) 139

(0.5%)
0

2000

4000

6000

8000

10000

12000

1~5 6~10 10~20 21~30 31~50 51~100 101~1000 >1000

#constraints

Figure 9: The distribution of numbers of constraints col-
lected from candidate modules.

4.3.2 Efficiency (RQ2).

Dependence analysis. Table 3 shows the time used to analyze
inter-project call dependencies. Due to limitations on space, we
only present the information for six projects, i.e., Numpy, Scipy,
Astropy [1], Scikit-learn [25], Pandas [23], andMatplotlib [12]. They
are the core libraries in the scientific Python ecosystem and involve
the most number of analyzed cross-project bugs in our study. The
first column shows the name of the project. The columns SLOC,
#functions, and #calls mean the numbers of the source lines of code,
functions, and method calls to other projects in base version of the
project, respectively. The column #versions shows the number of
analyzed versions. The last two columns present the time used to
extract the inter-project call relations from the base version of each
project and the time to incrementally analyze all the versions. It
can be seen that the time for processing base versions ranges from
0.59 hours to 1.36 hours with an average of 0.81 hours. The total
time for each project ranges from 1.98 to 9.33 hours. Combining the
graphs from individual projects, we construct an ecosystem-wide
call dependence network for 22 projects of 121 versions, with a time
cost of 50.13 hours. The network consists of 129,948 directed edges
and takes 248.4MB inMySql. The time cost is acceptable because the
dependence network is constructed in advance. It is only updated
by updating the graphs of individual projects when new versions
are committed.

Intra-module impact analysis.The two columns of #constraints
in Table 1 indicate the maximum and average numbers of con-
straints collected from the module entries to the call sites of the
buggy upstream function across all the candidates. The column
avg. of time(s) shows the mean time that the intra-module impact
analyzer needs to process a candidate module for the bug. The
last column presents the total time used to analyze the impact of
the bug, including the time for selecting the candidates from the
ecosystem-wide dependence network and the time for processing
all the candidates. The time cost of our approach is reasonable. It
takes 0.860 seconds on average to analyze the local impact for every
module. For 24 bugs, it takes no more than 100 seconds to estimate

Table 3: Time Used in Dependence Analysis

Project SLOC(K) #functions #calls #versions B(h) T(h)

Numpy 141 6730 56531 8 0.6 3.45
Scipy 190 10523 70060 9 0.88 4.71
Astropy 164 8820 53366 6 0.69 2.06

Scikit-learn 118 5003 42932 9 0.59 3.11
Pandas 213 13690 121577 11 1.36 9.33

Matplotlib 153 8166 52308 6 0.66 1.98

108

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ma and Chen, et al.

a) scikit-image/skimage/feature/register_translation.py

 def register_translation(src_image, target_image, upsample_factor=1,
space="real"):

201 upsampled_region_size = numpy.ceil(upsample_factor * 1.5)

203 dftshift = numpy.fix(upsampled_region_size / 2.0)

207 sample_region_offset = dftshift – shifts * upsample_factor

b) mne/io/egi/events.py

37 def _read_mff_events(filename, sfreq, nsamples):

65 marker = {

67 'start_sample': int(np.fix(start * sfreq)),

float

numpy.ndarray

float

Figure 10: Examples of how the impact of a cross-project bug
is worked around (Unrelated code is omitted.)

the ecosystem-wide impact for each of them. The analysis time
for N#6238 and N#11103 is raletively long since the two bugs each
involves more than 9000 candidate modules. The result suggests
that our technique is sufficiently fast to be used during fixing cross-
project bugs. By integrating the approach into bug trackers, it can
tell the impact of a cross-project bug in a short time.

4.4 Threats To Validity
We discuss the threats to validity during the evaluation. First, to
validate the affectedmodules reported by our tool, wemanually con-
figured individual modules and their dependencies to the suitable
versions to run the generated test cases. It is very time-consuming
and costs substantial human efforts. Therefore, we only validated
all the reported modules for 23 bugs. For each of the remaining
eight bugs, we randomly sampled 30 modules. In total, we checked
470 modules. While we believe the results indicate the effectiveness
of our technique, it is possible that results may be different for the
unsampled modules and untested bugs.

Another threat concerns the generalization of our experimental
results. We evaluated our tool using 31 cross-project bugs. These
bugs were collected after lengthy manual inspection of bug reports
to confirmwhether they are cross-project ones. The failure inducing
preconditionswere alsomanually extracted from bug reports, which
may be error-prone as we are dealing with others’ projects. To
mitigate the threat, we were very cautious during data collection
and only retained the bugs with preconditions clearly indicated
in bug reports. In addition, due to the scale of the project, the
evaluation was conducted only on the scientific Python ecosystem.
It is possible that our results may not generalize to other ecosystems.
However, the individual components of our technique are designed
in an ecosystem-agnostic fashion.

5 DISCUSSION
In this section, we discuss our findings from the evaluation and
their inspiration for our future work.

5.1 Cross-project Impact Could Be Got Around
As mentioned above, a large percentage of the affected downstream
modules identified by our approach have not been reported before,
which to some extent indicates that the cross-project impact of
upstream bugs is often hard to be noticed by developers. After
inspecting these modules, we find that the wrong results produced
by buggy upstream functions are sometimes worked around by
downstream modules.

Fig. 10 shows such a real case. The function fix() in Numpy was
reported to falsely return aNumpy array (numpy.ndarray) with zero
dimension when it was applied to a scalar (numpy/numpy#8993).
As Numpy’s documentation indicated, numpy.fix() should produce
a scalar. The function register_translation() in the project Scikit-
image used the buggy upstream function numpy.fix() with a float
input (shown at line 201 in Fig. 10a). At line 203, the variable
dftshift was the returned value of numpy.fix() with the data type
of numpy.ndarray. The variable dftshift was then only used at line
205 as an operand. Since a 0-dimension numpy.ndarray was seen
as a scalar in this operation, the wrong data type did not lead to a
wrong output of register_translation() in Scikit-image. Therefore,
though Scikit-image used the buggy upstream function numpy.fix()

with the impact-triggering input, its users or developers were not
likely to be aware of the wrong result produced by numpy.fix().

Another downstream function _read_mff_events() in the project
Mne also called numpy.fix(). Fig. 10b shows how _read_mff_events()

used numpy.fix() (used as np.fix() in the code) and processed
its output. The result of start * sfreq was a scalar. When it was
passed to numpy.fix(), the buggy function falsely returns a wrong
output of a 0-dimension array rather than a scalar. However, an
explicit type cast int() was applied to the output and converted it
to a correct type. Therefore, the wrong output is suppressed.

The two downstream modules worked around the upstream bug
by using the wrong results in insensitive operation or processing
the wrong results to suppress the bug for the time being. How-
ever, it is unclear if the downstream developers are aware of the
possible wrong outputs and put the work-arounds intentionally.
Nonetheless, the wrong output of the buggy upstream function
may put the downstream module in risk. Without the awareness of
the cross-project bug, if developers of Scikit-image modify the code
to use dftshift in a type-sensitive operation in future, it may lead
to some unpredictable consequences.

This case shows the possibility of designing the future bug im-
pact analyzer to further tell whether the bug impact is worked
around in affected downstream modules. This can be done by an-
alyzing how the modules process and use the returned values of
the buggy upstream functions. For example, considering the afore-
mentioned case that the returned value is of a wrong data type,
if the value is then used in a type-insensitive operation or data
type convention is applied, we have the reason to conjecture that
the wrong returned output will not interfere with later code of the
module. To design the approach, we need to get hints from code or
developers’ experience. More specifically, we first have to classify
the differences between the expected and the wrong outputs of the
buggy upstream functions into several categories, such as data type
difference or value difference. Then, we need to summarize which
operations are likely to be insensitive to each type of difference
or to eliminate the difference. Last, the analysis system needs to
learn these hints and apply them to the downstream modules to de-
cide whether they will get around the unexpected results of buggy
upstream functions.

109

https://github.com/numpy/numpy/issues/8993

Impact Analysis of Cross-Project Bugs on Software Ecosystems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

5.2 Keep the Ecosystem in Focus When
Considering Bug Impact

As we have discussed in Section 1, the cross-project impact of bugs
indicates the necessity of changing the developers’ points of view
during bug fixing. With the popularity of the collaboration in soft-
ware development and the increasing trend of software ecosystem,
understanding and repairing a bug can not be limited within its
rooted project. Both the upstream and downstream sides should con-
sider the bugs and their fixes from the perspective from the whole
ecosystem. However in most cases, only when the cross-project
bugs are submitted by the downstream projects, the upstream de-
velopers would check whether the fixes satisfied the demands of
the reported downstream projects. For other bugs, they rarely ask
for the suggestions or feedbacks for the fixing from other projects
mostly due to the lack of the awareness of cross-project impact of
bugs, and thus the proposed patches may not be satisfactory.

For the downstream projects, the developers should also take
into account the potential threat for their located ecosystems when
dealing with upstream bugs. As we have discussed, a part of down-
stream modules seldom use the upstream erroneous functions in
the way that triggers the bugs within the projects. Therefore, the
downstream developers may not be aware of the impact or even
deal with the bugs. However, as members in the ecosystem, the
affected modules are likely to be used by other projects. Once the
input parameters that they pass to the buggy upstream functions
via the directly affected downstream modules trigger the impact,
it may cause unpredicted consequences. Such uncertain use of the
downstream modules put the ecosystem in potential threat.

6 RELATEDWORK
6.1 Cross-project Bugs
The increasing number of cross-project bugs have attracted growing
attention from researchers. Canfora et al. [7] proposed an approach
to identifying Cross-System-Bug-Fixings (CSBFs) in FreeBSD and
OpenBSD kernels. They also employed social network analysis to
associate the occurrences of CSBFs with the social characteristics of
contributors. Ma et al. [21] concentrated on the common practices
of developers in fixing cross-project bugs. They especially focused
on downstream developers, and addressed the questions about how
they found the root causes and coordinated to deal with upstream
bugs. Ding et al. [14] studied the characteristics of workarounds
which were usually proposed by downstream developers when fac-
ing cross-project bugs. Liu [20] studied third-party library upgrade
bugs and developed an automated tool to repair them. Decan et
al. [9] reported that failures in upstream packages brought more
and more troubles to downstream projects. In contrast, our study
focuses on the ecosystem-wide impact of cross-project bugs, and
proposes a technique to identify the affected downstream modules.

6.2 Change Impact within Software Ecosystems
Projects within a software ecosystem co-evolve with each other
through their inter-dependencies. Changes to one project including
fixing a bug may cause ripple effects to many other downstream
ones. Bavota et al. [2] found that upstream upgrades have strong

effects on downstream projects when a downstream project depends
on upstream frameworks or general services.

A large number of studies focus on the API changes in libraries [3,
4, 6, 13, 16, 18, 24, 28]. Hora et al. [16] characterized the impact of
API evolution in the Pharo ecosystem by observing to what extent
API changes propagate to other projects. Robbes et al. [24] inves-
tigated the ripple effects of API deprecations across a Smalltalk
ecosystem, considering five aspects including the frequency, magni-
tude, duration, adaptation, and consistency. Bogart et al. [3] studied
how developers reasoned about and applied changes in three soft-
ware ecosystems: Eclipse, R/CRAN, and Node.js/npm by observing
their differences in practice, polices, and tools applied when per-
forming/avoiding a breaking change. Xavier et al. [28] analyzed the
impact of API breaking changes on client projects in Java ecosys-
tem. They concluded that most breaking changes did not have
a massive impact on clients. Tools have also been developed to
make breaking changes less harmful by easily applying patches
to downstream projects [5, 28]. Additionally, API changes in An-
droid ecosystem have also been investigated. McDonnell et al. [22]
concluded that Android APIs evolved faster than client migration.
Linares-Vasquez [19] analyzed how the number of questions in
StackOverflow increased when APIs were changed. They showed
Android developers were more active when they faced API modifi-
cations. To the best of our knowledge, although these studies have
empirically confirmed that upstream changes have ripple effects
on downstream projects, no existing work has proposed methods
to automatically analyze cross-project bug impact with such fine-
granularity and precision.

Recently, Hejderup et al. [15] proposed to construct an ecosys-
tem call graph for dependency management. They made an initial
evaluation on npm-based projects by executing test cases of npm
packages in Jalangi. Compared with their work, our ecosystem-
wide dependence analysis especially considered the scalability and
dynamics of software ecosystems by processing each project inde-
pendently and handling versions on an incremental basis.

7 CONCLUSION
We present an approach to analyzing the impact of cross-project
bugs on software ecosystems by identifying the affected down-
streammodules (classes/methods). For a confirmed bug with known
root cause function and failure inducing preconditions, we first
leverage an ecosystem-wide dependence analysis to collect the can-
didate downstream modules. Then, we perform an intra-module
analysis to encode the paths to the call sites of the buggy upstream
function as symbolic constraints. By solving the constraints to-
gether with the failure inducing preconditions, the affected down-
stream modules are identified. Our evaluation on the scientific
Python ecosystem shows that the approach is highly effective.

ACKNOWLEDGMENTS
This work is partially supported by the National Key R&D Program
of China (2018YFB1003901), the National Natural Science Founda-
tion of China (61872177, 61772259, 61832009, and 61772263), and
NSF 1748764, 1901242, and 1910300.

110

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ma and Chen, et al.

REFERENCES
[1] Astropy. 2018. A community Python library for Astronomy. http://www.astropy.

org/
[2] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and

Sebastiano Panichella. 2015. How the Apache community upgrades dependencies:
an evolutionary study. Empirical Software Engineering 20, 5 (oct 2015), 1275–1317.
https://doi.org/10.1007/s10664-014-9325-9

[3] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2016.
How to break an API: cost negotiation and community values in three software
ecosystems. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. 109–120. https://doi.org/10.1145/2950290.
2950325

[4] Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. 2016. Do
developers deprecate APIs with replacement messages? A large-scale analysis on
Java systems. In Procedings of 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering. 360–369. https://doi.org/10.1109/SANER.
2016.99

[5] Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. 2018. On
the use of replacement messages in API deprecation: An empirical study. Journal
of Systems and Software 137 (2018), 306–321. https://doi.org/10.1016/j.jss.2017.
12.007

[6] John Businge, Alexander Serebrenik, and Mark G.J. van den Brand. 2015. Eclipse
API usage: the good and the bad. Software Quality Journal 23, 1 (2015), 107–141.
https://doi.org/10.1007/s11219-013-9221-3

[7] Gerardo Canfora, Luigi Cerulo, Marta Cimitile, and Massimiliano Di Penta. 2011.
Social interactions around cross-system bug fixings: The case of FreeBSD and
OpenBSD. In Proceedings of the 8th Working Conference on Mining Software
Repositories. ACM Press, New York, New York, USA, 143–152. https://doi.org/10.
1145/1985441.1985463

[8] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT Solver. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Vol. 4963 LNCS. 337–340. https:
//doi.org/10.1007/978-3-540-78800-3_24

[9] Alexandre Decan, Tom Mens, Maëlick Claes, and Philippe Grosjean. 2016. When
GitHub meets CRAN: An analysis of inter-repository package dependency prob-
lems. In Procedings of International Conference on Software Analysis, Evolution,
and Reengineering. 493–504. https://doi.org/10.1109/SANER.2016.12

[10] NumPy developers. 2018. NumPy. http://www.numpy.org/
[11] SciPy developers. 2019. SciPy library. https://www.scipy.org/scipylib/index.html
[12] The Matplotlib development team. 2018. Matplotlib: Python plotting. https:

//matplotlib.org/
[13] Danny Dig and Ralph Johnson. 2006. How do APIs evolve? A story of refactoring.

In Journal of Software Maintenance and Evolution, Vol. 18. 83–107. https://doi.
org/10.1002/smr.328

[14] Hui Ding, Wanwangying Ma, Lin Chen, Yuming Zhou, and Baowen Xu. 2017.
An empirical study on downstream workarounds for cross-project bugs. In Pro-
ceedings of 2017 24th Asia-Pacific Software Engineering Conference. IEEE, 318–327.
https://doi.org/10.1109/APSEC.2017.38

[15] Joseph Hejderup, Arie van Deursen, and Georgios Gousios. 2018. Software
ecosystem call graph for dependency management. In Proceedings of the 40th
International Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER ’18). ACM, New York, NY, USA, 101–104. https://doi.org/10.1145/
3183399.3183417

[16] Andre Hora, Romain Robbes, Nicolas Anquetil, Anne Etien, Stephane Ducasse,
and Marco Tulio Valente. 2015. How do developers react to API evolution? The
Pharo ecosystem case. In Proceedings of the 2015 IEEE International Conference
on Software Maintenance and Evolution. IEEE, 251–260. https://doi.org/10.1109/
ICSM.2015.7332471

[17] Slinger Jansen, Anthony Finkelstein, and Sjaak Brinkkemper. 2009. A sense of
community: A research agenda for software ecosystems. In Proceedings of the 31st
International Conference on Software Engineering - Companion Volume. 187–190.
https://doi.org/10.1109/ICSE-COMPANION.2009.5070978

[18] Kamil Jezek, Jens Dietrich, and Premek Brada. 2015. How Java APIs break -
An empirical study. Information and Software Technology 65, C (2015), 129–146.
https://doi.org/10.1016/j.infsof.2015.02.014

[19] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
and Denys Poshyvanyk. 2014. How do API changes trigger stack overflow
discussions? a study on the Android SDK. In Proceedings of the 22nd International
Conference on Program Comprehension. 83–94. https://doi.org/10.1145/2597008.
2597155

[20] Yuefei Liu. 2017. Understanding and Generating Patches for Bugs Introduced by
Third-party Library Upgrades. Ph.D. Dissertation. http://hdl.handle.net/10012/
12762

[21] Wanwangying Ma, Lin Chen, Xiangyu Zhang, Yuming Zhou, and Baowen Xu.
2017. How do developers fix cross-project correlated bugs?: A case study on
the GitHub scientific python ecosystem. In Proceedings of the 39th International
Conference on Software Engineering. IEEE Press, Piscataway, NJ, USA, 381–392.

https://doi.org/10.1109/ICSE.2017.42
[22] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An empirical study of

API stability and adoption in the android ecosystem. In Proceedings of the 2013
IEEE International Conference on Software Maintenance. 70–79. https://doi.org/
10.1109/ICSM.2013.18

[23] Pydata. 2019. Pandas: Python data analysis library. https://pandas.pydata.org/
[24] Romain Robbes, Mircea Lungu, and David Röthlisberger. 2012. How do developers

react to API deprecation? The case of a Smalltalk ecosystem. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. 56:1—-56:11. https://doi.org/10.1145/2393596.2393662

[25] Scikit-learn. 2018. Scikit-learn: Machine learning in Python. http://scikit-
learn.github.io/stable

[26] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo. 2010.
A discriminative model approach for accurate duplicate bug report retrieval. In
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing. ACM, New York, NY, USA, 45–54. https://doi.org/10.1145/1806799.1806811

[27] Ying Wang, Ming Wen, Zhenwei Liu, Rongxin Wu, Rui Wang, Bo Yang, Hai
Yu, Zhiliang Zhu, and Shing-Chi Cheung. 2018. Do the Dependency Conflicts
in My Project Matter?. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2018). ACM, New York, NY, USA, 319–330.
https://doi.org/10.1145/3236024.3236056

[28] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. 2017. Historical
and impact analysis of API breaking changes: A large-scale study. In Proced-
ings of 24th IEEE International Conference on Software Analysis, Evolution, and
Reengineering. 138–147. https://doi.org/10.1109/SANER.2017.7884616

111

http://www.astropy.org/
http://www.astropy.org/
https://doi.org/10.1007/s10664-014-9325-9
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1109/SANER.2016.99
https://doi.org/10.1109/SANER.2016.99
https://doi.org/10.1016/j.jss.2017.12.007
https://doi.org/10.1016/j.jss.2017.12.007
https://doi.org/10.1007/s11219-013-9221-3
https://doi.org/10.1145/1985441.1985463
https://doi.org/10.1145/1985441.1985463
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/SANER.2016.12
http://www.numpy.org/
https://www.scipy.org/scipylib/index.html
https://matplotlib.org/
https://matplotlib.org/
https://doi.org/10.1002/smr.328
https://doi.org/10.1002/smr.328
https://doi.org/10.1109/APSEC.2017.38
https://doi.org/10.1145/3183399.3183417
https://doi.org/10.1145/3183399.3183417
https://doi.org/10.1109/ICSM.2015.7332471
https://doi.org/10.1109/ICSM.2015.7332471
https://doi.org/10.1109/ICSE-COMPANION.2009.5070978
https://doi.org/10.1016/j.infsof.2015.02.014
https://doi.org/10.1145/2597008.2597155
https://doi.org/10.1145/2597008.2597155
http://hdl.handle.net/10012/12762
http://hdl.handle.net/10012/12762
https://doi.org/10.1109/ICSE.2017.42
https://doi.org/10.1109/ICSM.2013.18
https://doi.org/10.1109/ICSM.2013.18
https://pandas.pydata.org/
https://doi.org/10.1145/2393596.2393662
http://scikit-learn.github.io/stable
http://scikit-learn.github.io/stable
https://doi.org/10.1145/1806799.1806811
https://doi.org/10.1145/3236024.3236056
https://doi.org/10.1109/SANER.2017.7884616

