skip to main content
10.1145/3377929.3389860acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
tutorial

Learning classifier systems: from principles to modern systems

Published:08 July 2020Publication History
First page image

References

  1. Bacardit, Jaume, et al. "Speeding-up Pittsburgh learning classifier systems: Modeling time and accuracy." Parallel Problem Solving from Nature-PPSN VIII. Springer Berlin Heidelberg, 2004.Google ScholarGoogle Scholar
  2. Bacardit, Jaume, and Natalio Krasnogor. "A mixed discrete-continuous attribute list representation for large scale classification domains." Proceedings of the 11th Annual conference on Genetic and evolutionary computation. ACM, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bacardit, Jaume, and Xavier Llorà. "Large-scale data mining using genetics-based machine learning." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3.1 (2013): 37--61.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bernadó-Mansilla, Ester, and Josep M. Garrell-Guiu. "Accuracy-based learning classifier systems: models, analysis and applications to classification tasks." Evolutionary Computation 11.3 (2003): 209--238.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Booker, Lashon Bernard. "Intelligent behavior as an adaptation to the task environment, University of Michigan." Ann Arbor, MI (1982).Google ScholarGoogle Scholar
  6. Bull, Larry. "A simple accuracy-based learning classifier system." Learning Classifier Systems Group Technical Report UWELCSG03-005, University of the West of England, Bristol, UK (2003).Google ScholarGoogle Scholar
  7. Bull, Larry, and O'Hara, Toby. "Accuracy-based neuro and neuro-fuzzy classifier systems.", GECCO 2002, 905-911, Morgan Kaufmann, 2002.Google ScholarGoogle Scholar
  8. Butz, M.; Kovacs, T.; Lanzi, P. & Wilson, S., "Toward a Theory of Generalization and Learning in XCS", IEEE Transactions on Evolutionary Computation, 8, 28--46, 2004Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Butz, M.; Lanzi, P. & Wilson, S. "Function Approximation With XCS: Hyperellipsoidal Conditions, Recursive Least Squares, and Compaction", IEEE Transactions on Evolutionary Computation, 12, 355--376, 2008Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Butz, M. V., "Rule-based Evolutionary Online Learning Systems: A Principled Approach to LCS Analysis and Design", Springer, 2005Google ScholarGoogle Scholar
  11. Frey, Peter W., and David J. Slate. "Letter recognition using Holland-style adaptive classifiers." Machine Learning 6.2 (1991): 161--182.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Goldberg, David E. "E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning." Reading: Addison-Wesley (1990).Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Goldberg, D. E., "Genetic Algorithms as a Computational Theory of Conceptual Design", Rzevski, G. & Adey, R. A. (Eds.), Applications of Artificial Intelligence in Engineering VI, Springer Netherlands, 1991, 3--16Google ScholarGoogle Scholar
  14. Holland, J., and J. Reitman. "Cognitive systems based on adaptive agents.", Pattern-directed inference systems (1978).Google ScholarGoogle ScholarCross RefCross Ref
  15. Holland, J. "Properties of the Bucket brigade." In Proceedings of the 1st International Conference on Genetic Algorithms, 1-7 (1985)Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Holmes, John H. "A genetics-based machine learning approach to knowledge discovery in clinical data." Proceedings of the AMIA Annual Fall Symposium. American Medical Informatics Association, 1996.Google ScholarGoogle Scholar
  17. Holmes, John H., and Jennifer A. Sager. "The EpiXCS workbench: a tool for experimentation and visualization." Learning Classifier Systems. Springer Berlin Heidelberg, 2007. 333--344.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Iqbal, Muhammad, Will N. Browne, and Mengjie Zhang. "Extending learning classifier system with cyclic graphs for scalability on complex, large-scale boolean problems." Proceedings of the 15th annual conference on Genetic and evolutionary computation. ACM, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Iqbal, M.; Browne, W. N. & Zhang, M., "Reusing Building Blocks of Extracted Knowledge to Solve Complex, Large-Scale Boolean Problems", IEEE Transactions on Evolutionary Computation, 2014, 18, 465--480Google ScholarGoogle ScholarCross RefCross Ref
  20. Kneissler, J.; Stalph, P. O.; Drugowitsch, J. & Butz, M. V., "Filtering Sensory Information with XCSF: Improving Learning Robustness and Robot Arm Control Performance", Evolutionary Computation, 2014, 22, 139--158Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kovacs, Tim. "A comparison of strength and accuracy-based fitness in learning classifier systems." School of Computer Science, University of Birmingham, Birmingham, UK (2002).Google ScholarGoogle Scholar
  22. Kovacs, Tim. "What should a classifier system learn and how should we measure it?." Soft Computing 6.3-4 (2002): 171--182.Google ScholarGoogle ScholarCross RefCross Ref
  23. Lanzi, P. L. & Loiacono, D., "XCSF with Neural Prediction", IEEE CEC, 2006, 2270--2276Google ScholarGoogle Scholar
  24. Lanzi, P. L.; Loiacono, D.; Wilson, S. W. & Goldberg, D. E., "Generalization in the XCSF Classifier System: Analysis, Improvement, and Extension", Evol. Comput., MIT Press, 2007, 15, 133--168Google ScholarGoogle Scholar
  25. Lanzi, P. L.; Loiacono, D.; Wilson, S. W. & Goldberg, D. E., "Extending XCSF Beyond Linear Approximation", GECCO 2005, ACM, 2005, 1827--1834Google ScholarGoogle Scholar
  26. Lanzi, P. L.; Loiacono, D. & Zanini, M., "Evolving classifier ensembles with voting predictors", IEEE CEC 2008, June 1-6, 2008, Hong Kong, China, 2008, 3760--3767Google ScholarGoogle Scholar
  27. Lanzi, P. L. & Wilson, S. W., "Using Convex Hulls to Represent Classifier Conditions", GECCO 2006, ACM, 2006, 1481--1488Google ScholarGoogle Scholar
  28. Liu, Y.; Xue, B. & Browne, W. N., "Visualisation and Optimisation of Learning Classifier Systems for Multiple Domain Learning", Simulated Evolution and Learning, Springer International Publishing, 2017, 448--461Google ScholarGoogle Scholar
  29. Loiacono, D.; Marelli, A. & Lanzi, P. L., "Support vector regression for classifier prediction", GECCO 2007, 2007, 1806--1813Google ScholarGoogle Scholar
  30. Nakata, M.; Browne, W. N. & Hamagami, T., "Theoretical adaptation of multiple rule-generation in XCS", GECCO 2018, Kyoto, Japan, July 15-19, 2018, 482--489Google ScholarGoogle Scholar
  31. Nakata, M.; Browne, W. N.; Hamagami, T. & Takadama, K., "Theoretical XCS parameter settings of learning accurate classifiers", GECCO 2017, Berlin, Germany, July 15-19, 2017, 2017, 473--480Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Pätzel, D. & Hähner, J., "An Algebraic Description of XCS", GECCO 2018 Companion, ACM, 2018, 1434--1441Google ScholarGoogle Scholar
  33. Pätzel, D.; Stein, A. & Hähner, J., "A Survey on Formal Theoretical Advances Regarding XCS", GECCO'19 Companion, ACM, July 2019, 1295--1302Google ScholarGoogle Scholar
  34. Riolo, Rick L. "Lookahead planning and latent learning in a classifier system." Proceedings of the first international conference on simulation of adaptive behavior on From animals to animats. MIT Press, 1991.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Smith, Stephen Frederick. "A learning system based on genetic adaptive algorithms.", Dissertation, University of Pittsburgh, 1980.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sommer, M.; Stein, A. & Hähner, J., "Local ensemble weighting in the context of time series forecasting using XCSF", IEEE SSCI, 2016Google ScholarGoogle ScholarCross RefCross Ref
  37. Stalph, P. O. & Butz, M. V., "Guided Evolution in XCSF", GECCO 2012, ACM, 2012, 911--918Google ScholarGoogle Scholar
  38. Stalph, P. O. & Butz, M. V., "Learning local linear Jacobians for flexible and adaptive robot arm control", GPEM, 2012, 13, 137--157Google ScholarGoogle Scholar
  39. Stein, A., "Reaction Learning", Ch. Basic Methods, In book: Organic Computing - Technical Systems for Survival in the Real World, Müller-Schloer, C. & Tomforde, S. (Eds.), Birkhäuser, 2017, 287--328Google ScholarGoogle Scholar
  40. Stein, A.; Eymüller, C.; Rauh, D.; Tomforde, S. & Hähner, J., "Interpolation-based Classifier Generation in XCSF", IEEE CEC, 2016, 3990--3998Google ScholarGoogle Scholar
  41. Stein, A.; Maier, R. & Hähner, J., "Toward Curious Learning Classifier Systems: Combining XCS with Active Learning Concepts", GECCO 2017 Companion, ACM, 2017, 1349--1356Google ScholarGoogle Scholar
  42. Stein, A.; Menssen, S. & Hähner, J., "What About Interpolation? A Radial Basis Function Approach to Classifier Prediction Modeling in XCSF", GECCO 2018, ACM, 2018Google ScholarGoogle Scholar
  43. Stein, A.; Rauh, D.; Tomforde, S. & Hähner, J., "Interpolation in the eXtended Classifier System: An Architectural Perspective", Journal of Systems Architecture, 75, 79-94, 2017Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Stolzmann, Wolfgang. "An introduction to anticipatory classifier systems." Learning Classifier Systems. Springer Berlin Heidelberg, 2000. 175--194.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Stone, Christopher, and Larry Bull. "For real! XCS with continuous-valued inputs." Evolutionary Computation 11.3 (2003): 299--336.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Tamee, K.; Bull, L. & Pinngern, O., "Towards Clustering with XCS", GECCO 2007, ACM, 2007, 1854--1860Google ScholarGoogle Scholar
  47. Tan, J.; Moore, J. & Urbanowicz, R., "Rapid Rule Compaction Strategies for Global Knowledge Discovery in a Supervised Learning Classifier System", The 2018 Conference on Artificial Life: A Hybrid of the European Conference on Artificial Life (ECAL) and the International Conference on the Synthesis and Simulation of Living Systems (ALIFE), 2013, 110--117Google ScholarGoogle Scholar
  48. Tran, T. H.; Sanza, C. & Duthen, Y., "Evolving prediction weights using evolution strategy", GECCO 2008, 2009-2016, 2008Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Urbanowicz, Ryan J., and Jason H. Moore. "Learning classifier systems: a complete introduction, review, and roadmap." Journal of Artificial Evolution and Applications 2009 (2009): 1.Google ScholarGoogle ScholarCross RefCross Ref
  50. Urbanowicz, Ryan J., and Will Browne. "An Introduction to Learning Classifier Systems". Springer, 2017Google ScholarGoogle Scholar
  51. Urbanowicz, Ryan J., and Jason H. Moore. "ExSTraCS 2.0: description and evaluation of a scalable learning classifier system." Evolutionary Intelligence(2015): 1--28.Google ScholarGoogle Scholar
  52. Urbanowicz, Ryan J., and Jason H. Moore. "The application of michigan-style learning classifier systems to address genetic heterogeneity and epistasis in association studies." Proceedings of the 12th annual conference on Genetic and evolutionary computation. ACM, 2010.Google ScholarGoogle Scholar
  53. Urbanowicz, Ryan J., Ambrose Granizo-Mackenzie, and Jason H. Moore. "An analysis pipeline with statistical and visualization-guided knowledge discovery for michigan-style learning classifier systems." Computational Intelligence Magazine, IEEE 7.4 (2012): 35--45.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Urbanowicz, Ryan, Ambrose Granizo-Mackenzie, and Jason Moore. "Instance-linked attribute tracking and feedback for michigan-style supervised learning classifier systems." Proceedings of the 14th annual conference on Genetic and evolutionary computation. ACM, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Urbanowicz, Ryan J., Delaney Granizo-Mackenzie, and Jason H. Moore. "Using expert knowledge to guide covering and mutation in a michigan style learning classifier system to detect epistasis and heterogeneity." PPSN XII. Springer Berlin Heidelberg, 2012. 266--275.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Urbanowicz, R. J.; Bertasius, G. & Moore, J. H., "An Extended Michigan-Style Learning Classifier System for Flexible Supervised Learning, Classification, and Data Mining", PPSN XIII, Springer International Publishing, 2014, 211--221Google ScholarGoogle Scholar
  57. Urbanowicz, R. J.; Lo, C.; Holmes, J. H. & Moore, J. H., "Attribute Tracking: Strategies Towards Improved Detection and Characterization of Complex Associations", GECCO 2018, ACM, 2018, 553--560Google ScholarGoogle Scholar
  58. Urbanowicz, R. J. & Browne, W. N., "Introduction to Learning Classifier Systems", Springer Publishing Company, 2017Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Wilson, Stewart W. "ZCS: A zeroth level classifier system." Evolutionary computation 2.1 (1994): 1--18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Wilson, Stewart W. "Classifier fitness based on accuracy." Evolutionary computation 3.2 (1995): 149--175.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Wilson, Stewart W. "Get real! XCS with continuous-valued inputs." Learning Classifier Systems. Springer Berlin Heidelberg, 2000. 209--219.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Wilson, Stewart W. "Classifiers that approximate functions." Natural Computing 1.2-3 (2002): 211--234.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Wilson, S., "Three Architectures for Continuous Action", Learning Classifier Systems, Springer Berlin Heidelberg, 2007, 4399, 239--257Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Wilson, S. W., "Classifiers that Approximate Functions", Natural Computing, Kluwer Academic Publishers, 2002, 1, 211--234Google ScholarGoogle Scholar
  65. Liu, Y., Browne, W. N., Xue, B. "Absumption to Complement Subsumption in Learning Classifier Systems", Proc. of GECCO '19, ACM, July 2019, 410--418Google ScholarGoogle Scholar
  66. Stein, A., Maier, R., Rosenbauer, L., Hähner, J. "XCS Classifier System with Experience Replay", Proc. of GECCO '20, ACM, 2020, accepted for publicationGoogle ScholarGoogle Scholar
  67. Aenugu, S., Spector, L. "Lexicase Selection in Learning Classifier Systems", Proc. of GECCO '19, ACM, July 2019, 356--364Google ScholarGoogle Scholar
  68. Nakata, M., Browne. W. "How XCS Can Prevent Misdistinguishing Rule Accuracy: A Preliminary Study", Proc. of GECCO '19 Companion, ACM, July 2019, 183--184Google ScholarGoogle Scholar
  69. Nakata, M., Browne. W. "Learning Optimality Theory for Accuracy-based Learning Classifier Systems", IEEE Transactions on Evolutionary Computation, 2020, accepted for publicationGoogle ScholarGoogle Scholar
  70. Horiuchi, M., Nakata, M. "Self-adaptation of XCS learning parameters based on Learning theory", Proc. of GECCO '20, ACM, 2020, accepted for publicationGoogle ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Learning classifier systems: from principles to modern systems
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          GECCO '20: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
          July 2020
          1982 pages
          ISBN:9781450371278
          DOI:10.1145/3377929

          Copyright © 2020 Owner/Author

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 8 July 2020

          Check for updates

          Qualifiers

          • tutorial

          Acceptance Rates

          Overall Acceptance Rate1,669of4,410submissions,38%

          Upcoming Conference

          GECCO '24
          Genetic and Evolutionary Computation Conference
          July 14 - 18, 2024
          Melbourne , VIC , Australia

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader