skip to main content
10.1145/3378936.3378982acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicsimConference Proceedingsconference-collections
research-article

Feature Selection for the Classification of Alzheimer's Disease Data

Published: 07 March 2020 Publication History

Abstract

In this paper, we describe the features of our large dataset (6400+ rows and 400+ features) that includes Alzheimer's disease (AD) patients, individuals with mild cognitive impairment (MCI, prodromal stage of Alzheimer's disease), and healthy individuals (without AD or MCI). We also, present a feature selection method applied on the dataset. Unlike prior data mining models that were applied to AD, our dataset is big in nature and includes genetic, neural, nutritional, and cognitive measures of all the individuals. All of these measures in the data have been shown by empirical studies to be related to the development of AD. We used a random forest classifier to discover which features best classify and differentiate between AD patients and healthy individuals. Identifying these features will likely provide evidence for protective factors against the development of AD.

References

[1]
Alashwal, H.; El Halaby, M.; Crouse, J.J.; Abdalla, A.; Moustafa, A.A. The Application of Unsupervised Clustering Methods to Alzheimer's Disease. Front. Comput. Neurosci. 2019, 13, 31.
[2]
Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., & Jones, E. 2011. Alzheimer's disease. Lancet, 377(9770), 1019--1031. DOI= 10.1016/s0140-6736(10)61349-9
[3]
Geldmacher, D. S. 2012. Alzheimer's disease. In M. F. Weiner & A. M. Lipton (Eds.), Clinical Manual of Alzheimer Disease and Other Dementias (pp. 127--158). Arlington: American Psychiatric Publishing.
[4]
Blennow, K., de Leon, M. J., & Zetterberg, H. (2006). Alzheimer's disease. Lancet, 368(9533), 387--403.
[5]
Moustafa, A. A., Hewedi, D. H., Eissa, A. M., Frydecka, D., & Misiak, B. (2015). Homocysteine Levels in Neurological Disorders. In T. Farooqui & A. Farooqui (Eds.), Diet and Exercise in Cognitive Function and Neurological Diseases.: Wiley-Blackwell.
[6]
Moustafa, A. A., Hewedi, D. H., Eissa, A. M., Myers, C. E., & Sadek, H. A. (2012). The relationship between associative learning, transfer generalization, and homocysteine levels in mild cognitive impairment. PLoS One, 7(9), e46496.
[7]
Johnson, J. K. (2009). Mild cognitive impairment subgroups. In B. L. Miller & B. F. Boeve (Eds.), The Behavioral Neurology of Dementia (pp. 188--196). Cambridge, GB: Cambridge University Press.
[8]
Langa, K. M., & Levine, D. A. (2014). The diagnosis and management of mild cognitive impairment: a clinical review. Jama, 312(23), 2551--2561.
[9]
Goldman, J. G., Weis, H., Stebbins, G., Bernard, B., & Goetz, C. G. (2012). Clinical differences among mild cognitive impairment subtypes in Parkinson's disease. Mov Disord, 27(9), 1129--1136.
[10]
Lawson, R. A., Yarnall, A. J., Duncan, G. W., Khoo, T. K., Breen, D. P., Barker, R. A., . . . Burn, D. J. (2014). Quality of life and mild cognitive impairment in early Parkinson's disease: does subtype matter? J Parkinsons Dis, 4(3), 331--336.
[11]
Sollinger, A. B., Goldstein, F. C., Lah, J. J., Levey, A. I., & Factor, S. A. (2010). Mild cognitive impairment in Parkinson's disease: subtypes and motor characteristics. Parkinsonism Relat Disord, 16(3), 177--180.
[12]
Hassan, M., Abbas, Q., Seo, S. Y., Shahzadi, S., Alashwal, H., Zaki, N., . . . Moustafa, A. A. (2018). Computational Modelling and Biomarker Studies of Pharmacological Treatment against Alzheimer's Disease. Molecular Medicine Reports.
[13]
Moustafa, A. A., Hassan, M., Hewedi, D. H., Hewedi, I., Garami, J. K., Al Ashwal, H., . . . Hornberger, M. (2018). Genetic underpinnings in Alzheimer's disease - a review. Rev Neurosci, 29(1), 21--38.
[14]
Apostolova, L. G., Mosconi, L., Thompson, P. M., Green, A. E., Hwang, K. S., Ramirez, A., . . . de Leon, M. J. (2010). Subregional hippocampal atrophy predicts Alzheimer's dementia in the cognitively normal. Neurobiol Aging, 31(7), 1077--1088.
[15]
Schuff, N., Woerner, N., Boreta, L., Kornfield, T., Shaw, L. M., Trojanowski, J. Q., . . . Alzheimer's Disease Neuroimaging, I. (2009). MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers. Brain, 132(Pt 4), 1067--1077.
[16]
Aggleton, J. P., Pralus, A., Nelson, A. J., & Hornberger, M. (2016). Thalamic pathology and memory loss in early Alzheimer's disease: moving the focus from the medial temporal lobe to Papez circuit. Brain, 139(Pt 7), 1877--1890.
[17]
Shi, J., Stonnington, C. M., Thompson, P. M., Chen, K., Gutman, B., Reschke, C., . . . Alzheimer's Disease Neuroimaging, I. (2015). Studying ventricular abnormalities in mild cognitive impairment with hyperbolic Ricci flow and tensor-based morphometry. Neuroimage, 104, 1--20.
[18]
Todd, K. L., Brighton, T., Norton, E. S., Schick, S., Elkins, W., Pletnikova, O., . . . Alzheimer's Disease Neuroimaging, I. (2017). Ventricular and Periventricular Anomalies in the Aging and Cognitively Impaired Brain. Front Aging Neurosci, 9, 445.
[19]
El Haj, M., Antoine, P., Nandrino, J. L., & Kapogiannis, D. (2015). Autobiographical memory decline in Alzheimer's disease, a theoretical and clinical overview. Ageing Res Rev, 23(Pt B), 183--192.
[20]
Drebing, C. E., Moore, L. H., Cummings, J. L., van Gorp, W. G., Hinkin, C., Perlman, S. L., . . . Cedarbaum, S. D. (1994). Patterns of neuropsychological performance among forms of subcortical dementia: A case study approach. Neuropsychiatry Neuropsychol Behav Neurol, 7, 57--66
[21]
Marx, J. (2005). Neuroscience. Preventing Alzheimer's: a lifelong commitment? Science, 309(5736), 864--866.
[22]
Duncan, H. D., Nikelski, J., Pilon, R., Steffener, J., Chertkow, H., & Phillips, N. A. (2018). Structural brain differences between monolingual and multilingual patients with mild cognitive impairment and Alzheimer disease: Evidence for cognitive reserve. Neuropsychologia, 109, 270--282.
[23]
Ng, T. P., Feng, L., Niti, M., Kua, E. H., & Yap, K. B. (2008). Tea consumption and cognitive impairment and decline in older Chinese adults. Am J Clin Nutr, 88(1), 224--231.
[24]
Joseph, J. A., Shukitt-Hale, B., & Willis, L. M. (2009). Grape juice, berries, and walnuts affect brain aging and behavior. J Nutr, 139(9), 1813S--1817S.
[25]
Muthaiyah, B., Essa, M. M., Chauhan, V., & Chauhan, A. (2011). Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells. Neurochem Res, 36(11), 2096--2103.
[26]
Larson, E. B. (2008). Physical activity for older adults at risk for Alzheimer disease. JAMA, 300(9), 1077--1079.
[27]
Sayal, N. (2015). Exercise training increases size of hippocampus and improves memory PNAS (2011) vol. 108 | no. 7 | 3017--3022. Ann Neurosci, 22(2), 107.
[28]
Liu, R., Sui, X., Laditka, J. N., Church, T. S., Colabianchi, N., Hussey, J., & Blair, S. N. (2012). Cardiorespiratory fitness as a predictor of dementia mortality in men and women. Med Sci Sports Exerc, 44(2), 253--259.
[29]
Jaroudi, W., Garami, J., Garrido, S., Hornberger, M., Keri, S., & Moustafa, A. A. (2017). Factors underlying cognitive decline in old age and Alzheimer's disease: the role of the hippocampus. Rev Neurosci, 28(7), 705--714.
[30]
Spira, A. P., & Gottesman, R. F. (2017). Sleep disturbance: an emerging opportunity for Alzheimer's disease prevention? Int Psychogeriatr, 29(4), 529--531.
[31]
Jorm, A. F. (2001). History of depression as a risk factor for dementia: an updated review. Aust N Z J Psychiatry, 35(6), 776--781.
[32]
Ownby, R. L., Crocco, E., Acevedo, A., John, V., & Loewenstein, D. (2006). Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry, 63(5), 530--538.
[33]
Palmer, K., Berger, A. K., Monastero, R., Winblad, B., Backman, L., & Fratiglioni, L. (2007). Predictors of progression from mild cognitive impairment to Alzheimer disease. Neurology, 68(19), 1596--1602.
[34]
Palmer, K., Di Iulio, F., Varsi, A. E., Gianni, W., Sancesario, G., Caltagirone, C., & Spalletta, G. (2010). Neuropsychiatric predictors of progression from amnestic-mild cognitive impairment to Alzheimer's disease: the role of depression and apathy. J Alzheimers Dis, 20(1), 175--183.
[35]
Debesh Jha and Goo-Rak Kwon, "Alzheimer's Disease Detection Using Sparse Autoencoder, Scale Conjugate Gradient and Softmax Output Layer with Fine Tuning," International Journal of Machine Learning and Computing vol. 7, no. 1, pp. 13--17, 2017.

Cited By

View all
  • (2025)A Scoping Review of Artificial Intelligence for Precision NutritionAdvances in Nutrition10.1016/j.advnut.2025.100398(100398)Online publication date: Feb-2025
  • (2024)Combining pathological and cognitive tests scores: A novel data analytics process to improve dementia prediction models1Technology and Health Care10.3233/THC-220598(1-18)Online publication date: 4-Jan-2024
  • (2022)Principles and Methods of Explainable Artificial Intelligence in HealthcarePrinciples and Methods of Explainable Artificial Intelligence in Healthcare10.4018/978-1-6684-3791-9.ch012(272-292)Online publication date: 20-May-2022

Index Terms

  1. Feature Selection for the Classification of Alzheimer's Disease Data

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICSIM '20: Proceedings of the 3rd International Conference on Software Engineering and Information Management
    January 2020
    258 pages
    ISBN:9781450376907
    DOI:10.1145/3378936
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    In-Cooperation

    • University of Science and Technology of China: University of Science and Technology of China

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 07 March 2020

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Alzheimer's Disease
    2. Classification
    3. Feature Selection
    4. Mild Cognitive Impairment

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    Conference

    ICSIM '20

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)12
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 05 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)A Scoping Review of Artificial Intelligence for Precision NutritionAdvances in Nutrition10.1016/j.advnut.2025.100398(100398)Online publication date: Feb-2025
    • (2024)Combining pathological and cognitive tests scores: A novel data analytics process to improve dementia prediction models1Technology and Health Care10.3233/THC-220598(1-18)Online publication date: 4-Jan-2024
    • (2022)Principles and Methods of Explainable Artificial Intelligence in HealthcarePrinciples and Methods of Explainable Artificial Intelligence in Healthcare10.4018/978-1-6684-3791-9.ch012(272-292)Online publication date: 20-May-2022

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media