skip to main content
10.1145/3378936.3378982acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicsimConference Proceedingsconference-collections
research-article

Feature Selection for the Classification of Alzheimer's Disease Data

Authors Info & Claims
Published:07 March 2020Publication History

ABSTRACT

In this paper, we describe the features of our large dataset (6400+ rows and 400+ features) that includes Alzheimer's disease (AD) patients, individuals with mild cognitive impairment (MCI, prodromal stage of Alzheimer's disease), and healthy individuals (without AD or MCI). We also, present a feature selection method applied on the dataset. Unlike prior data mining models that were applied to AD, our dataset is big in nature and includes genetic, neural, nutritional, and cognitive measures of all the individuals. All of these measures in the data have been shown by empirical studies to be related to the development of AD. We used a random forest classifier to discover which features best classify and differentiate between AD patients and healthy individuals. Identifying these features will likely provide evidence for protective factors against the development of AD.

References

  1. Alashwal, H.; El Halaby, M.; Crouse, J.J.; Abdalla, A.; Moustafa, A.A. The Application of Unsupervised Clustering Methods to Alzheimer's Disease. Front. Comput. Neurosci. 2019, 13, 31.Google ScholarGoogle Scholar
  2. Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., & Jones, E. 2011. Alzheimer's disease. Lancet, 377(9770), 1019--1031. DOI= 10.1016/s0140-6736(10)61349-9Google ScholarGoogle ScholarCross RefCross Ref
  3. Geldmacher, D. S. 2012. Alzheimer's disease. In M. F. Weiner & A. M. Lipton (Eds.), Clinical Manual of Alzheimer Disease and Other Dementias (pp. 127--158). Arlington: American Psychiatric Publishing.Google ScholarGoogle Scholar
  4. Blennow, K., de Leon, M. J., & Zetterberg, H. (2006). Alzheimer's disease. Lancet, 368(9533), 387--403. doi: 10.1016/s0140-6736(06)69113-7Google ScholarGoogle ScholarCross RefCross Ref
  5. Moustafa, A. A., Hewedi, D. H., Eissa, A. M., Frydecka, D., & Misiak, B. (2015). Homocysteine Levels in Neurological Disorders. In T. Farooqui & A. Farooqui (Eds.), Diet and Exercise in Cognitive Function and Neurological Diseases.: Wiley-Blackwell.Google ScholarGoogle Scholar
  6. Moustafa, A. A., Hewedi, D. H., Eissa, A. M., Myers, C. E., & Sadek, H. A. (2012). The relationship between associative learning, transfer generalization, and homocysteine levels in mild cognitive impairment. PLoS One, 7(9), e46496.Google ScholarGoogle ScholarCross RefCross Ref
  7. Johnson, J. K. (2009). Mild cognitive impairment subgroups. In B. L. Miller & B. F. Boeve (Eds.), The Behavioral Neurology of Dementia (pp. 188--196). Cambridge, GB: Cambridge University Press.Google ScholarGoogle Scholar
  8. Langa, K. M., & Levine, D. A. (2014). The diagnosis and management of mild cognitive impairment: a clinical review. Jama, 312(23), 2551--2561. doi: 10.1001/jama.2014.13806Google ScholarGoogle ScholarCross RefCross Ref
  9. Goldman, J. G., Weis, H., Stebbins, G., Bernard, B., & Goetz, C. G. (2012). Clinical differences among mild cognitive impairment subtypes in Parkinson's disease. Mov Disord, 27(9), 1129--1136. doi: 10.1002/mds.25062Google ScholarGoogle ScholarCross RefCross Ref
  10. Lawson, R. A., Yarnall, A. J., Duncan, G. W., Khoo, T. K., Breen, D. P., Barker, R. A., . . . Burn, D. J. (2014). Quality of life and mild cognitive impairment in early Parkinson's disease: does subtype matter? J Parkinsons Dis, 4(3), 331--336. doi: 10.3233/jpd-140390Google ScholarGoogle ScholarCross RefCross Ref
  11. Sollinger, A. B., Goldstein, F. C., Lah, J. J., Levey, A. I., & Factor, S. A. (2010). Mild cognitive impairment in Parkinson's disease: subtypes and motor characteristics. Parkinsonism Relat Disord, 16(3), 177--180. doi: 10.1016/j.parkreldis.2009.11.002Google ScholarGoogle ScholarCross RefCross Ref
  12. Hassan, M., Abbas, Q., Seo, S. Y., Shahzadi, S., Alashwal, H., Zaki, N., . . . Moustafa, A. A. (2018). Computational Modelling and Biomarker Studies of Pharmacological Treatment against Alzheimer's Disease. Molecular Medicine Reports.Google ScholarGoogle Scholar
  13. Moustafa, A. A., Hassan, M., Hewedi, D. H., Hewedi, I., Garami, J. K., Al Ashwal, H., . . . Hornberger, M. (2018). Genetic underpinnings in Alzheimer's disease - a review. Rev Neurosci, 29(1), 21--38. doi: 10.1515/revneuro-2017-0036Google ScholarGoogle ScholarCross RefCross Ref
  14. Apostolova, L. G., Mosconi, L., Thompson, P. M., Green, A. E., Hwang, K. S., Ramirez, A., . . . de Leon, M. J. (2010). Subregional hippocampal atrophy predicts Alzheimer's dementia in the cognitively normal. Neurobiol Aging, 31(7), 1077--1088. doi: 10.1016/j.neurobiolaging.2008.08.008Google ScholarGoogle ScholarCross RefCross Ref
  15. Schuff, N., Woerner, N., Boreta, L., Kornfield, T., Shaw, L. M., Trojanowski, J. Q., . . . Alzheimer's Disease Neuroimaging, I. (2009). MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers. Brain, 132(Pt 4), 1067--1077. doi: 10.1093/brain/awp007Google ScholarGoogle ScholarCross RefCross Ref
  16. Aggleton, J. P., Pralus, A., Nelson, A. J., & Hornberger, M. (2016). Thalamic pathology and memory loss in early Alzheimer's disease: moving the focus from the medial temporal lobe to Papez circuit. Brain, 139(Pt 7), 1877--1890. doi: 10.1093/brain/aww083Google ScholarGoogle ScholarCross RefCross Ref
  17. Shi, J., Stonnington, C. M., Thompson, P. M., Chen, K., Gutman, B., Reschke, C., . . . Alzheimer's Disease Neuroimaging, I. (2015). Studying ventricular abnormalities in mild cognitive impairment with hyperbolic Ricci flow and tensor-based morphometry. Neuroimage, 104, 1--20. doi: 10.1016/j.neuroimage.2014.09.062Google ScholarGoogle ScholarCross RefCross Ref
  18. Todd, K. L., Brighton, T., Norton, E. S., Schick, S., Elkins, W., Pletnikova, O., . . . Alzheimer's Disease Neuroimaging, I. (2017). Ventricular and Periventricular Anomalies in the Aging and Cognitively Impaired Brain. Front Aging Neurosci, 9, 445. doi: 10.3389/fnagi.2017.00445Google ScholarGoogle ScholarCross RefCross Ref
  19. El Haj, M., Antoine, P., Nandrino, J. L., & Kapogiannis, D. (2015). Autobiographical memory decline in Alzheimer's disease, a theoretical and clinical overview. Ageing Res Rev, 23(Pt B), 183--192. doi: 10.1016/j.arr.2015.07.001Google ScholarGoogle Scholar
  20. Drebing, C. E., Moore, L. H., Cummings, J. L., van Gorp, W. G., Hinkin, C., Perlman, S. L., . . . Cedarbaum, S. D. (1994). Patterns of neuropsychological performance among forms of subcortical dementia: A case study approach. Neuropsychiatry Neuropsychol Behav Neurol, 7, 57--66Google ScholarGoogle Scholar
  21. Marx, J. (2005). Neuroscience. Preventing Alzheimer's: a lifelong commitment? Science, 309(5736), 864--866. doi: 10.1126/science.309.5736.864Google ScholarGoogle ScholarCross RefCross Ref
  22. Duncan, H. D., Nikelski, J., Pilon, R., Steffener, J., Chertkow, H., & Phillips, N. A. (2018). Structural brain differences between monolingual and multilingual patients with mild cognitive impairment and Alzheimer disease: Evidence for cognitive reserve. Neuropsychologia, 109, 270--282. doi: 10.1016/j.neuropsychologia.2017.12.036Google ScholarGoogle ScholarCross RefCross Ref
  23. Ng, T. P., Feng, L., Niti, M., Kua, E. H., & Yap, K. B. (2008). Tea consumption and cognitive impairment and decline in older Chinese adults. Am J Clin Nutr, 88(1), 224--231. doi: 10.1093/ajcn/88.1.224Google ScholarGoogle ScholarCross RefCross Ref
  24. Joseph, J. A., Shukitt-Hale, B., & Willis, L. M. (2009). Grape juice, berries, and walnuts affect brain aging and behavior. J Nutr, 139(9), 1813S--1817S. doi: 10.3945/jn.109.108266Google ScholarGoogle ScholarCross RefCross Ref
  25. Muthaiyah, B., Essa, M. M., Chauhan, V., & Chauhan, A. (2011). Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells. Neurochem Res, 36(11), 2096--2103. doi: 10.1007/s11064-011-0533-zGoogle ScholarGoogle ScholarCross RefCross Ref
  26. Larson, E. B. (2008). Physical activity for older adults at risk for Alzheimer disease. JAMA, 300(9), 1077--1079. doi: 10.1001/jama.300.9.1077Google ScholarGoogle ScholarCross RefCross Ref
  27. Sayal, N. (2015). Exercise training increases size of hippocampus and improves memory PNAS (2011) vol. 108 | no. 7 | 3017--3022. Ann Neurosci, 22(2), 107. doi: 10.5214/ans.0972.7531.220209Google ScholarGoogle Scholar
  28. Liu, R., Sui, X., Laditka, J. N., Church, T. S., Colabianchi, N., Hussey, J., & Blair, S. N. (2012). Cardiorespiratory fitness as a predictor of dementia mortality in men and women. Med Sci Sports Exerc, 44(2), 253--259. doi: 10.1249/MSS.0b013e31822cf717Google ScholarGoogle ScholarCross RefCross Ref
  29. Jaroudi, W., Garami, J., Garrido, S., Hornberger, M., Keri, S., & Moustafa, A. A. (2017). Factors underlying cognitive decline in old age and Alzheimer's disease: the role of the hippocampus. Rev Neurosci, 28(7), 705--714. doi: 10.1515/revneuro-2016-0086Google ScholarGoogle ScholarCross RefCross Ref
  30. Spira, A. P., & Gottesman, R. F. (2017). Sleep disturbance: an emerging opportunity for Alzheimer's disease prevention? Int Psychogeriatr, 29(4), 529--531. doi: 10.1017/S1041610216002131Google ScholarGoogle ScholarCross RefCross Ref
  31. Jorm, A. F. (2001). History of depression as a risk factor for dementia: an updated review. Aust N Z J Psychiatry, 35(6), 776--781. doi: 10.1046/j.1440-1614.2001.00967.xGoogle ScholarGoogle ScholarCross RefCross Ref
  32. Ownby, R. L., Crocco, E., Acevedo, A., John, V., & Loewenstein, D. (2006). Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry, 63(5), 530--538. doi: 10.1001/archpsyc.63.5.530Google ScholarGoogle ScholarCross RefCross Ref
  33. Palmer, K., Berger, A. K., Monastero, R., Winblad, B., Backman, L., & Fratiglioni, L. (2007). Predictors of progression from mild cognitive impairment to Alzheimer disease. Neurology, 68(19), 1596--1602. doi: 10.1212/01.wnl.0000260968.92345.3fGoogle ScholarGoogle ScholarCross RefCross Ref
  34. Palmer, K., Di Iulio, F., Varsi, A. E., Gianni, W., Sancesario, G., Caltagirone, C., & Spalletta, G. (2010). Neuropsychiatric predictors of progression from amnestic-mild cognitive impairment to Alzheimer's disease: the role of depression and apathy. J Alzheimers Dis, 20(1), 175--183. doi: 10.3233/JAD-2010-1352Google ScholarGoogle ScholarCross RefCross Ref
  35. Debesh Jha and Goo-Rak Kwon, "Alzheimer's Disease Detection Using Sparse Autoencoder, Scale Conjugate Gradient and Softmax Output Layer with Fine Tuning," International Journal of Machine Learning and Computing vol. 7, no. 1, pp. 13--17, 2017.Google ScholarGoogle Scholar

Index Terms

  1. Feature Selection for the Classification of Alzheimer's Disease Data

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICSIM '20: Proceedings of the 3rd International Conference on Software Engineering and Information Management
      January 2020
      258 pages
      ISBN:9781450376907
      DOI:10.1145/3378936

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 March 2020

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader