skip to main content
10.1145/3379156.3391353acmconferencesArticle/Chapter ViewAbstractPublication PagesetraConference Proceedingsconference-collections
short-paper

Detection of Saccades and Quick-Phases in Eye Movement Recordings with Nystagmus

Published: 02 June 2020 Publication History

Abstract

Benign Paroxysmal Positional Vertigo (BPPV) is the most common cause of vertigo and dizziness. Patients with those symptoms can be diagnosed by the presence of a specific pattern of nystagmus during the Dix-Hallpike maneuver. However, almost half of dizzy patients visiting Emergency Department (ED) are misdiagnosed, leading to significant morbidity and high medical costs. This can be attributed to the lack of specialized expertise of front-line physicians and to the lack of validated automatic commercial devices and software for nystagmus detection and quantification. Here we aim to enhance saccade detection thereby improving automatic nystagmus quantification. The proposed method is evaluated on a nystagmus dataset recorded from patients in the ED as they undergo the Dix-Hallpike maneuver. Additionally, the proposed method is also tested on a publicly available saccade dataset and compared with state-of-the-art eye movement detection methods.

References

[1]
Richard Andersson, Linnea Larsson, Kenneth Holmqvist, Martin Stridh, and Marcus Nyström. 2017. One algorithm to rule them all? An evaluation and discussion of ten eye movement event-detection algorithms. Behavior Research Methods 49, 2 (April 2017), 616–637. https://doi.org/10.3758/s13428-016-0738-9
[2]
Marie E. Bellet, Joachim Bellet, Hendrikje Nienborg, Ziad M. Hafed, and Philipp Berens. 2018. Human-level saccade detection performance using deep neural networks. bioRxiv (June 2018). https://doi.org/10.1101/359018
[3]
Pierre M. Daye and Lance M. Optican. 2014. Saccade detection using a particle filter. Journal of Neuroscience Methods 235 (Sept. 2014), 157–168. https://doi.org/10.1016/j.jneumeth.2014.06.020
[4]
M. R. Dix and C. S. Hallpike. 1952. LXXVIII The Pathology, Symptomatology and Diagnosis of Certain Common Disorders of the Vestibular System. Annals of Otology, Rhinology & Laryngology 61, 4 (Dec. 1952), 987–1016. https://doi.org/10.1177/000348945206100403
[5]
Michael Dorr, Thomas Martinetz, Karl R. Gegenfurtner, and Erhardt Barth. 2010. Variability of eye movements when viewing dynamic natural scenes. Journal of Vision 10, 10 (Aug. 2010), 28–28. https://doi.org/10.1167/10.10.28
[6]
Ralf Engbert and Reinhold Kliegl. 2003. Microsaccades uncover the orientation of covert attention. Vision Research 43, 9 (April 2003), 1035–1045. https://doi.org/10.1016/S0042-6989(03)00084-1
[7]
Casper J. Erkelens and Olaf B. Sloot. 1995. Initial directions and landing positions of binocular saccades. Vision Research 35, 23-24 (Dec. 1995), 3297–3303. https://doi.org/10.1016/0042-6989(95)00077-R
[8]
K Hanley, T O’Dowd, and N Considine. 2001. A systematic review of vertigo in primary care.Br J Gen Pract 51, 469 (Aug. 2001), 666–671. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1314080/
[9]
Roy S. Hessels, Diederick C. Niehorster, Chantal Kemner, and Ignace T. C. Hooge. 2017. Noise-robust fixation detection in eye movement data: Identification by two-means clustering (I2MC). Behavior Research Methods 49, 5 (Oct. 2017), 1802–1823. https://doi.org/10.3758/s13428-016-0822-1
[10]
Sabrina Hoppe and Andreas Bulling. 2016. End-to-End Eye Movement Detection Using Convolutional Neural Networks. arXiv:1609.02452 [cs] (Sept. 2016). http://arxiv.org/abs/1609.02452 arXiv: 1609.02452.
[11]
Martti Juhola, Heikki Aalto, Henry Joutsijoki, and Timo P. Hirvonen. 2013. The Classification of Valid and Invalid Beats of Three-Dimensional Nystagmus Eye Movement Signals Using Machine Learning Methods. https://doi.org/10.1155/2013/972412
[12]
Athanasios Katsarkas. 1999. Benign Paroxysmal Positional Vertigo (BPPV): Idiopathic Versus Post-traumatic. Acta Oto-Laryngologica 119, 7 (Jan. 1999), 745–749. https://doi.org/10.1080/00016489950180360
[13]
Kattah Jorge C., Talkad Arun V., Wang David Z., Hsieh Yu-Hsiang, and Newman-Toker David E.2009. HINTS to Diagnose Stroke in the Acute Vestibular Syndrome. Stroke 40, 11 (Nov. 2009), 3504–3510. https://doi.org/10.1161/STROKEAHA.109.551234
[14]
Oleg V. Komogortsev and Alex Karpov. 2013. Automated classification and scoring of smooth pursuit eye movements in the presence of fixations and saccades. Behavior Research Methods 45, 1 (March 2013), 203–215. https://doi.org/10.3758/s13428-012-0234-9
[15]
Alexandra I. Korda, Pantelis A. Asvestas, George K. Matsopoulos, Errikos M. Ventouras, and Nikolaos Smyrnis. 2018. Automatic identification of eye movements using the largest lyapunov exponent. Biomedical Signal Processing and Control 41 (March 2018), 10–20. https://doi.org/10.1016/j.bspc.2017.11.004
[16]
L. Larsson, M. Nyström, and M. Stridh. 2013. Detection of Saccades and Postsaccadic Oscillations in the Presence of Smooth Pursuit. IEEE Transactions on Biomedical Engineering 60, 9 (Sept. 2013), 2484–2493. https://doi.org/10.1109/TBME.2013.2258918
[17]
Sooha Park Lee, Jeremy B Badler, and Norman I Badler. 2002. Eyes alive. In ACM transactions on graphics (TOG), Vol. 21. ACM, 637–644.
[18]
T. Lempert and H. Neuhauser. 2009. Epidemiology of vertigo, migraine and vestibular migraine. Journal of Neurology 256, 3 (March 2009), 333–338. https://doi.org/10.1007/s00415-009-0149-2
[19]
Andra Mihali, Bas van Opheusden, and Wei Ji Ma. 2017. Bayesian microsaccade detection. Journal of Vision 17, 1 (Jan. 2017), 13–13. https://doi.org/10.1167/17.1.13
[20]
Matthew S. Mould, David H. Foster, Kinjiro Amano, and John P. Oakley. 2012. A simple nonparametric method for classifying eye fixations. Vision Research 57 (March 2012), 18–25. https://doi.org/10.1016/j.visres.2011.12.006
[21]
Jeffrey B. Mulligan. 2018. Statistical Identification of Fixations in Noisy Eye Movement Data. Electronic Imaging 2018, 14 (Jan. 2018), 1–7. https://doi.org/10.2352/ISSN.2470-1173.2018.14.HVEI-528
[22]
F. Møller, M. Laursen, J. Tygesen, and A. Sjølie. 2002. Binocular quantification and characterization of microsaccades. Graefe’s Arch Clin Exp Ophthalmol 240, 9 (Sept. 2002), 765–770. https://doi.org/10.1007/s00417-002-0519-2
[23]
David E. Newman-Toker, Yu-Hsiang Hsieh, Carlos A. Camargo, Andrea J. Pelletier, Gregary T. Butchy, and Jonathan A. Edlow. 2008. Spectrum of Dizziness Visits to US Emergency Departments: Cross-Sectional Analysis From a Nationally Representative Sample. Mayo Clin Proc 83, 7 (July 2008), 765–775. https://doi.org/10.4065/83.7.765
[24]
Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. 2002. On Spectral Clustering: Analysis and an algorithm. In Advances in Neural Information Processing Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani (Eds.). MIT Press, 849–856. http://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm.pdf
[25]
Marcus Nyström and Kenneth Holmqvist. 2010. An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data. Behavior Research Methods 42, 1 (Feb. 2010), 188–204. https://doi.org/10.3758/BRM.42.1.188
[26]
J. Otero-Millan, J. L. A. Castro, S. L. Macknik, and S. Martinez-Conde. 2014. Unsupervised clustering method to detect microsaccades. Journal of Vision 14, 2 (Feb. 2014), 18–18. https://doi.org/10.1167/14.2.18
[27]
Jorge Otero-Millan, Xoana G. Troncoso, Stephen L. Macknik, Ignacio Serrano-Pedraza, and Susana Martinez-Conde. 2008. Saccades and microsaccades during visual fixation, exploration, and search: Foundations for a common saccadic generator. Journal of Vision 8, 14 (Oct. 2008), 21–21. https://doi.org/10.1167/8.14.21 Publisher: The Association for Research in Vision and Ophthalmology.
[28]
Tomasz Pander, Robert Czabański, Tomasz Przybyła, and Dorota Pojda-Wilczek. 2014. An automatic saccadic eye movement detection in an optokinetic nystagmus signal. Biomedical Engineering / Biomedizinische Technik 59, 6 (Jan. 2014). https://doi.org/10.1515/bmt-2013-0137
[29]
Thiago Santini, Wolfgang Fuhl, Thomas Kübler, and Enkelejda Kasneci. 2015. Bayesian Identification of Fixations, Saccades, and Smooth Pursuits. arXiv:1511.07732 [cs] (Nov. 2015). http://arxiv.org/abs/1511.07732 arXiv: 1511.07732.
[30]
Denis Sheynikhovich, Marcia Bécu, Changmin Wu, and Angelo Arleo. 2018. Unsupervised detection of microsaccades in a high-noise regime. Journal of Vision 18, 6 (June 2018), 19–19. https://doi.org/10.1167/18.6.19
[31]
Mikhail Startsev, Ioannis Agtzidis, and Michael Dorr. 2019. 1D CNN with BLSTM for automated classification of fixations, saccades, and smooth pursuits. Behav Res 51, 2 (April 2019), 556–572. https://doi.org/10.3758/s13428-018-1144-2
[32]
M Steffen. 1990. A simple method for monotonic interpolation in one dimension. Astronomy and Astrophysics 239 (1990), 443. http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?db_key=AST&bibcode=1990A%26A...239.443S&letter=0&classic=YES&defaultprint=YES&whole_paper=YES&page=443&epage=443&send=Send+PDF&filetype=.pdf
[33]
Miika Toivanen, Kati Pettersson, and Kristian Lukander. 2015. A probabilistic real-time algorithm for detecting blinks, saccades, and fixations from EOG data. (2015), 15.
[34]
Ronald J. Tusa. 1999. Nystagmus: Diagnostic and Therapeutic Strategies. Seminars in Ophthalmology 14, 2 (Jan. 1999), 65–73. https://doi.org/10.3109/08820539909056066
[35]
Giacomo Veneri, Pietro Piu, Francesca Rosini, Pamela Federighi, Antonio Federico, and Alessandra Rufa. 2011. Automatic eye fixations identification based on analysis of variance and covariance. Pattern Recognition Letters 32, 13 (Oct. 2011), 1588–1593. https://doi.org/10.1016/j.patrec.2011.06.012
[36]
M von Brevern, A Radtke, F Lezius, M Feldmann, T Ziese, T Lempert, and H Neuhauser. 2006. Epidemiology of benign paroxysmal positional vertigo: a population based study. Journal of Neurology, Neurosurgery & Psychiatry 78, 7 (Dec. 2006), 710–715. https://doi.org/10.1136/jnnp.2006.100420
[37]
Ulrike von Luxburg. 2007. A tutorial on spectral clustering. Stat Comput 17, 4 (Dec. 2007), 395–416. https://doi.org/10.1007/s11222-007-9033-z

Cited By

View all
  • (2025)High-Accuracy Intermittent Strabismus Screening via Wearable Eye-Tracking and AI-Enhanced Ocular Feature AnalysisBiosensors10.3390/bios1502011015:2(110)Online publication date: 14-Feb-2025
  • (2024)A Digital Camera-Based Eye Movement Assessment Method for NeuroEye ExaminationIEEE Journal of Biomedical and Health Informatics10.1109/JBHI.2023.328594028:2(655-665)Online publication date: Feb-2024
  • (2023)Approach to Quantify Eye Movements to Augment Stroke Diagnosis With a Non-Calibrated Eye-TrackerIEEE Transactions on Biomedical Engineering10.1109/TBME.2022.322701570:6(1750-1757)Online publication date: Jun-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ETRA '20 Short Papers: ACM Symposium on Eye Tracking Research and Applications
June 2020
305 pages
ISBN:9781450371346
DOI:10.1145/3379156
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 June 2020

Check for updates

Author Tags

  1. BPPV
  2. Nystagmus
  3. Quick-Phases
  4. Saccade Detection
  5. Vertigo

Qualifiers

  • Short-paper
  • Research
  • Refereed limited

Conference

ETRA '20

Acceptance Rates

Overall Acceptance Rate 69 of 137 submissions, 50%

Upcoming Conference

ETRA '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)24
  • Downloads (Last 6 weeks)5
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)High-Accuracy Intermittent Strabismus Screening via Wearable Eye-Tracking and AI-Enhanced Ocular Feature AnalysisBiosensors10.3390/bios1502011015:2(110)Online publication date: 14-Feb-2025
  • (2024)A Digital Camera-Based Eye Movement Assessment Method for NeuroEye ExaminationIEEE Journal of Biomedical and Health Informatics10.1109/JBHI.2023.328594028:2(655-665)Online publication date: Feb-2024
  • (2023)Approach to Quantify Eye Movements to Augment Stroke Diagnosis With a Non-Calibrated Eye-TrackerIEEE Transactions on Biomedical Engineering10.1109/TBME.2022.322701570:6(1750-1757)Online publication date: Jun-2023
  • (2021)1D Convolutional Neural Networks for Detecting NystagmusIEEE Journal of Biomedical and Health Informatics10.1109/JBHI.2020.302538125:5(1814-1823)Online publication date: May-2021

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media