skip to main content
10.1145/3381271.3381282acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmipConference Proceedingsconference-collections
research-article

Single image super-resolution using deep hierarchical attention network

Published:28 February 2020Publication History

ABSTRACT

In this paper, we present a compact and accurate super-resolution algorithm using the attention-augmented convolutional neural network, which can exploit and weight hierarchical features at multiple scales and levels to improve learning capability. The proposed network employs cascading U-net structure to allow the flow of low-frequency information to focus on learning high- and mid-level features. In addition, deep hierarchical channel attention is developed to help in learning from high-level complex features. Moreover, we propose a hierarchical pyramid attention to learn the inter and intra-level dependencies between the feature maps. Furthermore, the comprehensive quantitative and qualitative experiments on low-resolution and real image benchmark datasets illustrate that our algorithm performs favorably against the state-of-the-art methods.

References

  1. Chen R., Jia H. Z., Xie X. D., Gao W. 2015. Robust image/video super-resolution display. in Proc. ACM Symposium on Virtual Reality Software & Technology.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chen R., Jia H. Z., Xie X. D., Gao W. 2017. Blind restoration for nonuniform aerial images using nonlocal Retinex model and shearlet-based higher-order regularization. J. Electronic Imaging, 26, 3, 1--18.Google ScholarGoogle ScholarCross RefCross Ref
  3. X. Li and M. T. Orchard, "New edge-directed interpolation," IEEE Trans. Image Process., vol. 10, no. 10, pp. 1521--1527, Oct. 2001.Google ScholarGoogle Scholar
  4. Zhang L., Wu X. 2006. An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image Process., 15, 8, 2226--2238.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Marquina A., Osher S. J. 2008. Image super-resolution by TV regularization and bregman iteration. J. Sci. Comput., 37, 3, 367--382.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Timofte R., De Smet V., Van Gool L. 2014. A+: Adjusted anchored neighborhood regression for fast super-resolution," in Proc. IEEE Asian Conf. Comput. Vis.Google ScholarGoogle Scholar
  7. Yang J., Wright J., Huang T. S., Ma Y. 2010. Image super-resolution via sparse representation. IEEE Trans. Image Process., 19, 11, 2861--2873.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Freeman W., Jones T., Pasztor E., 2002. Example-based super-resolution," IEEE Comput. Graph. Appl., 22, 2, 56--65.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dong C., Loy C. C., He K., Tang X. 2016. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell., 38, 2, 295--307.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dong C., Loy C. C., He K., Tang X. 2016. Accelerating the super-resolution convolutional neural network. in Proc. European Conference on Computer Vision (ECCV).Google ScholarGoogle ScholarCross RefCross Ref
  11. Kim J., Lee J., Lee K. 2016. Accurate image superresolution using very deep convolutional networks," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR).Google ScholarGoogle Scholar
  12. Shi W., Caballero J., Huszár F., Totz J., Aitken A. P., Bishop R., Rueckert D., Wang Z. 2016. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  13. Tong T., Li G., Liu X., Gao Q. 2017. Image super-resolution using dense skip connections," in Proc. IEEE Int. Conf. Comput. Vis. (ICCV).Google ScholarGoogle Scholar
  14. Lim B., Son S., Kim H., Nah S., Lee K. M. 2017. Enhanced deep residual networks for single image super-resolution," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW).Google ScholarGoogle Scholar
  15. Zhang Y., Tian Y., Kong Y., Zhong B., Fu Y. 2018. Residual dense network for image super-resolution. in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  16. Yu J., Fan Y., Yang J., Xu N., Wang Z., Wang X., Huang T. 2018. Wide activation for efficient and accurate image super-resolution. in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR).Google ScholarGoogle Scholar
  17. Tai Y., Yang J., Liu X. 2017. Image super-resolution via deep recursive residual network. in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  18. Tai Y., Yang J., Liu X., Xu C. 2017. Memnet: A persistent memory network for image restoration," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  19. Li Z., Yang J., Liu Z., Yang X., Jeon G., Wu W. 2019. Feedback networks for image super-resolution. in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  20. Lai W., Huang J., Ahuja N., Yang M. 2017. Deep laplacian pyramid networks for fast and accurate superresolution. in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR).Google ScholarGoogle Scholar
  21. Lai W., Huang J., Ahuja N., Yang M. 2018. Fast and accurate image super-resolution with deep laplacian pyramid networks. IEEE Trans. Pattern Anal. Mach. Intell., 38, 2, 295--307.Google ScholarGoogle Scholar
  22. Li J., Fang F., Mei K., Zhang G. 2018. Multi-scale residual network for image super-resolution. in Proc. European Conference on Computer Vision (ECCV).Google ScholarGoogle ScholarCross RefCross Ref
  23. Haris M., Shakhnarovich G., Ukita N. 2018. Deep back projection networks for super-resolution. in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  24. Zhong Z., Shen T., Yang Y., Z Lin., Zhang C. 2018. Joint sub-bands learning with clique structures for wavelet domain super-Resolution. in Proc. Neural Information Processing Systems (NuerIPS).Google ScholarGoogle Scholar
  25. Hu J., Shen L., Samuel S., Sun G., Wu H. 2019. Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wang X., Girshick R., Gupta A., He K. 2018. Non-local neural networks. in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  27. Zhang Y., Li K., Wang L., Zhong B., Fu Y. 2018. Image superresolution using very deep residual channel attention networks. in Proc. European Conference on Computer Vision (ECCV).Google ScholarGoogle Scholar
  28. Dai T., Cai J., Zhang Y., Xia S., Zhang L. 2019. Second-order attention network for single image super-resolution. in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  29. Timofte R., Agustsson E., Van Gool L., Yang M. H., Zhang L., Lim B., Son S., Kim H., Nah S., Lee K. M. 2017. Ntire 2017 challenge on single image super-resolution: Methods and results. in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW).Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Single image super-resolution using deep hierarchical attention network

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICMIP '20: Proceedings of the 5th International Conference on Multimedia and Image Processing
      January 2020
      191 pages
      ISBN:9781450376648
      DOI:10.1145/3381271
      • Conference Chair:
      • Wanyang Dai,
      • Program Chairs:
      • Xiangyang Hao,
      • Ramayah T,
      • Fehmi Jaafar

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 28 February 2020

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
    • Article Metrics

      • Downloads (Last 12 months)3
      • Downloads (Last 6 weeks)1

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader