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Abstract

Several relevant analyses on configurable software systems remain intractable because they require ex-
amining vast and highly-constrained configuration spaces. Those analyses could be addressed through statis-
tical inference, i.e., working with a much more tractable sample that later supports generalizing the results
obtained to the entire configuration space. To make this possible, the laws of statistical inference impose
an indispensable requirement: each member of the population must be equally likely to be included in the
sample, i.e., the sampling process needs to be “uniform”. Various SAT-samplers have been developed for
generating uniform random samples at a reasonable computational cost. Unfortunately, there is a lack of
experimental validation over large configuration models to show whether the samplers indeed produce gen-
uine uniform samples or not. This paper (i) presents a new statistical test to verify to what extent samplers
accomplish uniformity and (ii) reports the evaluation of four state-of-the-art samplers: Spur, QuickSampler,
Unigen2, and Smarch. According to our experimental results, only Spur satisfies both scalability and unifor-
mity.

1 Introduction

Generating SAT solutions at random is a problem of critical importance in a variety of domains: software product
line analysis and configuration [42, [30, [37], software testing [9] (16} 48, [47], integrated circuit simulation and
verification [54, 40| 23], etc.

To grasp this problem’s relevancy and complexity, let us present an example taken from the software product
lines domain. BusyBO)ﬂ is a software tool that replaces many standard GNU/Linux utilities with a single small
executable, thus providing an environment customized for a diversity of embedded systems. To achieve size-
optimization, BusyBox is remarkably modular, supporting the inclusion/exclusion of 613 features at compile
time. These features and their interrelationships are specified with a configuration language named Kconﬁgﬂ
To guarantee that every valid configuration satisfies all dependencies, the Kconfig model is translated into a
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Boolean formula that is then processed with a logic engine [l [18] (e.g., a SAT solver [8]). Therefore, a valid
configuration corresponds to a satisfiable assignment of the formula, also called, a SAT solution [47] or a witness
[91.

As a consequence of the inter-feature dependencies, the space of valid configurations (7.428-1014%) is a tiny
portion of the whole configuration space (2613): only 2.185 - 1073%% of the possible configurations are vaIicﬂ
Nevertheless, the population of valid configurations is still huge, and consequently, many relevant issues cannot
be handled by examining every valid configuration.

For instance, Halin et al. [21] adopted an exhaustive strategy to test the JHipstetE] system, checking all its
valid configurations. JHipster is a code generator for web applications with only 45 selectable features that
can produce a total of 26,256 valid configurations. Checking this modest configuration space with the INRIA
Grid’SOOCff] required 4,376 hours of CPU time (~ 182 days), and 5.2 terabytes of disk space.

Recently, several researchers have advocated approaching this and other issues related to configurable sys-
tems through statistical inference [50, [38], 53| [20, 26, 29, 2, [5]; that is, working with a much more tractable
sample that later supports generalizing the results obtained to the population. An essential requirement that
any sample must satisfy to be genuinely representative of the population is that it is collected at random [27].
In other words, each member of the population must be equally likely to be included in the sample. Authors
often use the term uniform random sampling [47,[49] to emphasize this idea.

A naive approach to get such a sample would be (i) generating a random configuration set without consid-
ering the feature dependencies, and then (ii) checking with a logic engine if the configurations conform to the
dependencies. Unfortunately, and as mentioned above, feature dependencies shrink the configuration space
extraordinarily, and so getting a valid configuration at pure random is extremely unlikely. As a result, more elabo-
rated algorithms have been proposed to generate uniform random samples at a reasonable computational cost.
Moreover, verifying that these algorithms and their actual implementations indeed generate genuine uniform
samples is a challenge by itself, and thus distinct procedures have been proposed to certify sampler uniformity.

A severe shortcoming of available uniformity certification procedures is that they require gigantic sample
sizes to produce reliable results [16, 1, 9]. As a consequence, sampler uniformity has been checked only on
miniature models so far, which hinders the external validity of the results. This paper presents a new statistical
test that overcomes this limitation by reducing the sample size enormously (~ 99%). The paper also reports the
empirical evaluation of the scalability and uniformity of four state-of-the-art samplers on configuration models
with up to 18,570 features: Spur [1], QuickSampler [16], Unigen2 [11,10], and Smarch [43]. The obtained results
reveal that only Spur satisfies both scalability and uniformity.

The remaining of this paper is organized as follows: Section [2] overviews prior research on uniform ran-
dom samplers and techniques to assess to what extent samplers accomplish uniformity. Section [3 details our
goodness-of-fit test. Section[4]applies our test to evaluate Spur, QuickSampler, Unigen2, and Smarch on a bench-
mark composed of 218 real models. Finally, Section [5|summarizes the main conclusions of our work.
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2 Uniform random sampling: state-of-the-art

As an illustrative example of the relevance that SAT solution sampling has to approach problems related to con-
figurable software systems, in the 23rd International Systems and Software Product Line Conference (SPLC),
there was a challenge dedicated specifically to this topic and entitled “Product Sampling for Product Lines: The
Scalability Challenge” [46]]. Moreover, different papers have been recently published on uniform random sam-
pling, and other sorts of sampling such as ¢t-wise, in SPLC [52, (44, [37] and the International Working Conference
on Variability Modelling of Software-Intensive Systems (VaMoS) [31].

2.1 Uniform random samplers

The following sections summarize the foremost strategies to generate uniform random samples for a model
encoded as a Boolean formula ¢. It is worth remarking that this paper adopts the sampling terminology typically
used in statistics (e.g., see [12,[27]): a sample is a collection of cases. In this paper context, a case is a SAT solution
of ¢. The sample size is the number of cases in the sample.

2.1.1 Atomic mutations

QuickSampIe:E] [16] proposes a heuristic procedure to gain scalability by minimizing the number of calls to a
constraint solver. It starts by generating a random variable assignment without taking into account the formula
constraints. Logically, the assignment often violates some constraints and thus it is unsatisfiable. So, QuickSam-
pler calls the 73 solver [[15] to fix the assignment by providing a MAX-SAT solution. Then, QuickSampler flips the
value of each variable and calls again Z3 to get the correspondent SAT assignment. The differences between the
variable values of the original and flipped SAT assignments are called atomic mutations. By combining those mu-
tations, QuickSampler quickly generates many new assignments without calling the solver because, according
to the experiments reported by QuickSampler’s authors, those combinations usually happen to be satisfiable.

2.1.2 Hashing-based sampling

Several techniques divide the space of SAT solutions into small “cells” of approximately the same size using r
independent hash functions. Accordingly, sampling is done by choosing a cell at random, and then generating
a satisfying assignment for that cell using a SAT solver. A critical point of these techniques is determining the
“right” r value. For instance, Bellare et al. [7] showed that an r equal to the number of formula variables
guarantees uniformity. However, Chakraborty et al. [11] reported that such r does not scale in practice; in
contrast, » = 3 scales better and ensures near-uniformity. Unigeni] [10] develops these ideas further, giving
stronger uniformity guarantees.

2.1.3 Counting-based sampling

In Section 7.1.4 of [28]], Knuth showed how to accomplish uniform random sampling by subsequently partitioning
the SAT solution space on variable assignments, and then counting the number of solutions of the resulting parts.

®https://github.com/RafaelTupynamba/quicksampler
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Conceptually, the procedure works as follows: first, the number of solutions #SAT () of the input formula ¢ with

vvariables 1, za, . . ., x, is computed. Then, the number of solutions where x; is true is counted : #SAT(pAx1).
Therefore, x1 follows a Bernoulli distribution with probability p; = %ﬁgl), and accordingly, its random

assignment is generated. For instance, imagine that z; is assigned to false. Then, x5 would follow a Bernoulli
distribution with probability p» = %, and it would be randomly assigned. The procedure advances
until the last variable z,, is assigned, and thus the random solution is completed.

The original algorithm by Knuth is specified on BDDs very efficiently, as the probabilities required for all the
possible SAT solutions are computed just once with a single BDD traversal, and then reused every time a solution
is generated. Nevertheless, Knuth’s algorithm can be easily adapted to SAT technology. In particular, Spu:ﬁ M

and Smardﬂ [43] rely on a #SAT-solver named sharpSAT [51].

2.2 Methods for testing sample uniformity

The following methods have been devised to test the uniformity of a random sampler S:

2.2.1 Method 1: Generate a massive sample with S, and compare it with another one obtained simulating
an ideal uniform sampler

This is the most common technique in the literature [1,[16}[47,[10,49]. First, the total number n of SAT solutions is
counted for the Boolean formula ¢, typically using a #SAT-solver. Having n, the generation of a uniform sample
with size s is simulated as follows: imagine that numbers 1, 2,...,n are put into a box; then, s numbers are

sampled with replacement from the box, guaranteeing that the probability each number has to be extracted is
1

" For example, JHipster encompasses 26,256 valid configurations [21]. Figure[{shows the histogram of a sam-
ple ten times greater than the number of configurations, which has been obtained sampling with replacement
from the set {1,2,...,26256}. The x-axis depicts numbers’ occurrences, i.e., there are numbers that appear
0,1,...,27 times in the sample; the y-axis shows how frequent are those occurrences in the sample. As ex-
pected, most numbers appear ten times (see the red vertical line in Figure[l), however, and due to randomness,

some numbers appear more frequently than others.

Sample size = #SAT Solutions x 10 = 262560
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Figure 1: Simulated uniform random sample of the JHipster configuration model
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Another sample with size s, in this case composed of SAT solutions, is then generated with the sampler S.
For this sample, a counterpart histogram to Figure([lis obtained, representing how often solutions appear in the
sample.

Finally, the uniformity of S is verified by measuring the distance between both histograms, using, for in-
stance, the Kullback-Leibler divergence [1].

Unfortunately, this method has a severe limitation: it does not scale except for formulas with a reduced
number of SAT-solutions because, to produce reliable results, s needs to be much larger than n (see [1, [16] for
an explanation). For example, Dutra et al. [16] propose s > 5n. As the number of solutions grows exponentially
with the number of variables of ¢, the method only works for the simplest models with just a few features.

2.2.2 Method 2: Assume the existence of a uniform sampler U, and compare the samples generated by both
Sand U

Chakraborty and Meel [9] proposed this method, providing its corresponding implementation as well, called
barbari The method makes a strong supposition: there is available a sampler U that is known to be uniform.
Thus two samples of the same size s are generated with S and U and, depending on the distance between the
samples, barbarik decides if S is approximately uniform.

The key of the method is how to define “approximately” for reaching a balance between uniformity and
sample size, i.e., for avoiding the large s that Method 1 requires. Two parameters, called tolerance € and intoler-

ance n, support adjusting the uniformity criterion. A sampler is uniform whenever the probability p1, p2, ..., pn
of all the n SAT solutions is exactly %

Barbarik relaxes this definition, proposing that a sampler is additive almost-uniform if py,ps,...,pn €
[%, %} Moreover, a sampler is n-far from uniformity if ‘ Yo pi— %} >n.

Chakraborty and Meel claim that s depends on € and 7 exclusively, but not on n. In particular, they state that
a uniformity test with significance level o« = 0.1 (i.e., 0.9 probability of accepting the uniformity of a sampler
when it is genuinely uniform) and power 5 = 0.1 (i.e., 0.9 probability of rejecting the uniformity of a sampler
that indeed it is not uniform) is accomplished when ¢ = 0.6 and np = 0.9, requiring a sample size of 1, 729, 750.
Unfortunately, they do not provide a detailed formal proof for these questions in [9].

An evident weakness of this method is the necessity of a sampler U with certified uniformity as a support
lever. It is worth noting that, although an algorithm can be proven to generate uniform samples theoretically,
some of its implementations may have errors. In other words, every sampling program needs to be tested, and
thus Method 2 implicitly assumes the existence of another reliable uniformity testing method.

2.2.3 Method 3: Compare the theoretical variable probabilities in o with the empirical variable frequencies
in a sample generated with S

Plazar et al.'s method [47] begins computing the theoretical probability each variable = has to appear in a SAT
solution. To do so, the procedure introduced in Section is adopted, calling a #SAT solver repeatedly, one

time per variable. #SAT(¢) gives the total number of SAT solutions, and #SAT(p A x) calculates the number of
#SAT (pAx)

ZSAT(p) - Likewise, if 2 is true ¢ times in a sample

solutions where x is true. Hence, the probability of z isp =

©https://github.com/meelgroup/barbarik
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of size s, its empirical frequency is f = % Then, the deviation between p and f is d = 100 - ‘p;ff'. Finally,

Plazar et al. propose two thresholds for d: (i) when d < 10 for all variables, the deviations are very low, and
thus sampler uniformity is accepted; (ii) when d > 50 for some variables, they show very high deviations, and
so uniformity is rejected. Regarding the sample size, Plazar et al. propose always using s ~ 10%, independently
of the number of variables of ¢ (no formal justification is given for this specific value in [47]).

Regrettably, this method often throws false negatives for formulas where many variables have low prob-
abilities. For instance, let us suppose that, for some variable, p = 0.01. Then, a genuine uniform sampler
might easily generate a sample where f is slightly different just due to randomness, e.g., f = 0.015. Therefore,
d =100 - w = 50, and thus the sampler uniformity would be rejected. The chances that these types
of wrong diagnoses happen increases with the number of low-probability variables, and it is worth noting that
real models with numerous low-probability variables are not “corner cases”; for example, in three out of the
seven configuration models analyzed in [22], more than 46% of their variables have p < 0.05: the open-source
project Fiasco v2014092821, the Dell laptop configurator, and the Automotive 02 system.

A major shortcoming of all existing uniformity testing methods is the large sample size they need. For in-
stance, in [1] and [49], Method 1 is applied on a model called blasted_case110 with 287 variables, requiring
s = 4 - 108 SAT solutions. In [9], Method 2 is used on blasted_case110 as well, needing this time 1, 729, 750
SAT solutions to ensure probability errors of Type 1 = 0.1 and Type 2 8 = 0.1. As we will see in Section
our method provides stronger test guarantees (o« = 0.01 and 8 = 0.01) for blasted_case110 with a minimal
sample size of 13,027 solutions (i.e., a 99.25% sample size reduction with respect to Method 2).

Three methods have been proposed to verify samplers’ uniformity. Methods 1 and 3 only provide a
numerical distance. Method 2 gives the statistical distribution of the distance as well, thus supporting
the estimation of Type | and Il errors.

Unfortunately, all methods require a huge sample size, thus uniformity has been tested so far on trivial
models, with less than 100 features.

3 Assessing the uniformity of SAT solution samplers

Figure [2| sketches the method we propose for verifying if a sampler generates uniform random samples of a
model encoded as a Boolean formula . Similarly to Method 3 discussed in Section[2.2.3] our approach compares
empirical information about a sample with theoretical information about the whole population of SAT solutions
that the model represents. Nevertheless, instead of using the limited Method 3 deviation measure, we use a
statistical goodness-of-test that (i) has a robust mathematical basis, (ii) estimates the statistical significance of
the results (i.e., how generalizable they are), and (iii) supports adjusting the sample size according to precise
statistical criteria (i.e., Type I and Il errors, and effect size). First, Section [3.1 explains this statistical goodness-
of-fit test. Afterwards, Section [3.2]discusses how to determine a convenient sample size for the goodness-of-fit
test.
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Figure 2: Proposed method for verifying if a sampler generates uniform samples of a model ¢

3.1 Goodness-of-fit testing

In statistics, the methods for examining how well a sample agrees with the population distribution are known
as goodness-of-fit testing [14]. Those methods require characterizing both the sample and the population in
terms of a quantitative measure. In particular, our characterization will be based on the variable probability
distribution.

Computing the distribution of the variable frequencies in a sample is straightforward: traverse the sample
and calculate, for each variable, the proportion of cases where the variable is true. Nevertheless, obtaining
the variable probabilities for the whole population is more complicated. In Section[2.2.3] we saw that those
probabilities can be computed by calling a #SAT solver repeatedly; in particular, if n is the number of variables of
¢, the #SAT solver needs to be called n+1 times, i.e., once to get #SAT (), and n times to compute #SAT(p A x;).
It is worth noting that the #SAT problem is computationally even more expensive than the SAT one [8], and so
#SAT-solver calls often take considerably more time than SAT-solver calls.

Fortunately, much more efficient methods can often be applied to calculate variable probabilities in large
configuration models. For instance, (i) if ¢ has n variables and it is encoded as a Binary Decision Diagram (BDD)
with v nodes, Heradio et al.’s algorithm [22] computes the probabilities in O(nv) time complexityﬂ; or (ii) if the
configuration model is specified as a feature model with n features, m of which appear in crosstree-constraints,
Fernandez-Amoros et al.’s algorithm [17] does it in O(n?2™).

Once the probabilities are known, the goodness-of-fit can be tested graphically. For example, the density

"The main weakness of BDDs is finding good variable and clause orders that minimize the computer memory required for the BDD.
Although finding optimal orders is an NP-problem, there are several strategies to handle this issue heuristically [35} [3, 4} [39] [34].



plot in Figure [3 provides an exploratory goodness-of-fit analysis of four samples generated with Spur, Quick-
sampler, Unigen2, and Smarch for the JHipster configuration model; every sample is composed of 5,994 SAT
solutions (Section provides a justification for this specific sample size). Figure[3|represents the distribution
of the absolute differences between every pair f; and p; corresponding to the frequency and probability of the
variable z; in the sample and the population, respectively. The samples generated with Spur, Unigen2, and
Smarch match the population distribution adequately, as all differences are close to zero. In contrast, Quick-
Sampler’s sample departs considerably from the population distribution because it produces large differences,
some of them even greater than 0.5.

Spur Quicksampler
4_
2100~ 23-
[2] @ 2-
3 50- o
a at-
0- . . ' ' . 0-, ' g ' .
S W S N S S & S N $
(N (S (S (N N (S (N (N N
Variable probabilities' absolute difference Variable probabilities’ absolute difference
Unigen2 Smarch
> 150 - >
'@ 100- g 100~
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0- . . . ' . 0- . . ' .
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Variable probabllltles absolute difference Variable probabilities' absolute difference

Figure 3: Density plot showing the distribution of the absolute difference between the population and sample
variable probabilities for the JHipster configuration model

After exploring the samples goodness-of-fit graphically, it is desirable to advance towards a more formal test
that provides an accurate numerical quantification. For that, the distance between the sample and population
distributions is measured with the Jensen-Shannon divergence [34].

Let ¢ be the Boolean formula that encodes a model with n variables. To compare variable frequencies and
probabilities, two vectors F' and P are considered: (i) ' = [f1, ..., fn] stores the empirical frequencies, i.e.,
fi is how many SAT solutions in the sample have variable x; assigned to true, divided by the sample size; (ii)
P = [p1,...,py] stores the variable probabilities.

To avoid worthless comparisons, i-elements with p; = 0 or p; = 1 are removed from F and P. In SPL
terminology, these x; variables are called dead and core features, respectively [45]. As all solutions in the sample
are guaranteed to be valid, the empirical frequencies of dead and core features are necessarily O and 1 as well.

Then, the Jensen-Shannon divergence between F' and P, denoted D(F, P), is calculated as:

Dbi
Z fz10g2 f -+ Z pZIOng I fz (1)

Vi|0<p; <1 2 Vi|0<p; <1

D(F,P) =

D(F, P) measures to what extent the difference between F' and P is greater than expected by chance if
F corresponded to a uniform random sample. In the extreme cases, D(F, P) = 0 when F totally matches P,
and D(F, P) = 1 when the F' completely disagrees with P.



Nevertheless, D is a mere distance, i.e., we cannot tell if D is significantly greater than expected due to ran-
domness. Therefore, a statistical inference test is needed to quantify how generalizable the obtained distance
is, i.e., a test that estimates the probability of a specific value of D(F, P) assuming that the sampler is gen-
uinely uniform. In the case that the estimated probability is excessively low, it is unlikely that the disagreement
between F and P is due to chance, and so we can conclude that the sampler is not uniform.

Let s be the sample size, and m the number of elements in P that are neither zero nor one (e.g., the JHipster
model has 45 features, there are seven core features and no dead features, so m = 38). According to the proof
given by Grosse et al. in Section 4.C of [19], 2s(In2) D(F, P) has a x distribution with m — 1 degrees of freedom.
As a result, a Chi-Squared goodness-of-fit test [14] built upon the statistic 2s(In2) D(F, P) will help us to decide
whether the sampler is uniform.

Samplers’ uniformity can be checked with a standard Chi-Squared goodness-of-fit test built upon the
Jensen-Shannon divergence of the variable probabilities.

3.2 Sample size

In contrast to typical Null Hypothesis Significance Tests (NHSTs), where the null hypothesis H states the opposite
to what the researcher pursues to demonstrate, goodness-of-fit tests are a special case of NHSTs [14] where H
is: “the sample agrees with the population”. Accordingly, the reliability of these tests depends on the following
parameters:

e The significance level « sets the probability of making a Type I error, i.e., the probability of rejecting H
when it is indeed true. It is worth noting that « is also the threshold for rejecting Hy (i.e., Hy is rejected
whenever p-value < «).

e (3 sets the probability of making a Type Il error, i.e., the probability of accepting a false Hy.

When H, is false, it is false to some degree. That degree is measured by another parameter called effect size
[33]. In particular, Cohen [13] proposes the index w for measuring the effect size in Chi-Squared tests. As a rule
of thumb, w values around 0.1, 0.3, and 0.5 correspond to small, medium, and large effect sizes, respectively.

Interestingly, sample size, effect size, «, and 5 have an intimate relationship in NHSTs: given any three of
them, the fourth can be determined. In Section 7.3 of [13], Cohen provides different power tables to calculate
the minimum sample size required to ensure the reliability of a Chi-Squared test given the values of «, 3, w,
and y?’s degrees of freedom. Nowadays, many statistical packages provide those tables, e.g., see Chapter 10 of
[25].

In Section [3.1 we saw that the goodness-of-fit of any sample from the JHipster configuration model can be
undertaken with a Chi-Squared test with m — 1 = 37 degrees of freedom. Then, according to Cohen’s power
tables, the required sample size is 5,994 cases when o = 0.01, 8 = 0.01, and w = 0.1.



The sample size depends on: (i) the degrees of freedom of the Chi-Squared test, and (ii) three parameters
that accommodate the reliability of the test: a, 3, and w.

4 Empirical evaluation of samplers’ scalability and uniformity

This paper’s primary goal is to determine if there is an available sampler that fulfills both scalability and unifor-
mity. To that end, four state-of-the-art samplers were tested experimentally:

1. Spu[1].
2. QuickSampIelFE] [16l.
3. UnigenZ™|[11, [10].

4, SmardE] [43].

4.1 Research questions

Specifically, our experimental validation targets two research questions:

e RQ1: Scalability and running time. Are Spur, QuickSampler, Unigen2, or Smarch able to generate samples
out of any size models with a moderate running time?

e RQ2: Uniformity. Do Spur, QuickSampler, Unigen2, or Smarch generate uniform SAT solutions?

4.2 Experimental setup

The samplers were tested against a benchmark composed of 218 models encoded as Boolean formulas in Con-
junctive Normal Form (CNF). A CNF formula is a conjunction of clauses, where each clause is a disjunction of
literals [8]]. The scatter plot in Figuredescribes the models in terms of the number of variables and clauses
(the points that represent the largest models have been labelled).

Each model’s sample size was determined with the procedure described in Section[3.2] In particular, the R
package pwxﬁ [25] was used to perform Cohen’s power tables calculations. To ensure the highest reliability of
the results, we set & = 0.01, 8 = 0.01, and w = 0.1. That is, the x? test confidence level was fixed to 99%, the
power to 99%, and the effect size to small.

The histogram in Figure [5] describes the distribution of the obtained sample sizes. It is worth noting that,
as Section discusses, prior methods for testing samplers’ uniformity fail to test non-trivial models because

Zhttps://github.com/ZaydH/spur
Bhttps://github.com/RafaelTupynamba/quicksampler
“https://bitbucket.org/kuldeepmeel/unigen
Bhttps://github.com/jeho-oh/Kclause_Smarch
https://cran.r-project.org/web/packages/pwr
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Figure 4: Size, in terms of the number of variables and clauses, of the benchmark models.

they need sample sizes greater than 10°, even for models with less than 100 variables. In contrast, the sample
size that our method requires ranges from 4,002 for the smallest model to 85,422 configurations for the biggest

one.
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Figure 5: Histogram of the sample sizes fora = 8 = 0.01 and w = 0.1

Nine of the 218 models represent configurable software systems. The remaining models are industrial SAT
formulas (mostly modeling integrated circuits) that are typically used as a benchmark in the SAT-sampling lit-
erature [10], [1, [47]. Table [1| describes the nine configuration models (the largest model is usually known as
Automotive02, e.g., see [32]]).

The samplers were run on an Intel(R) Core(TM) i7-6700HQ, 2.60GHz, 16GB RAM, operating Linux Ubuntu
19.10. They were executed on a single thread (i.e., with no parallelization), and without considering any Boolean
formulas’ preprocessing, such as formula’s minimal independent support [24].

Variable probabilities were computed with Heradio et al.’s algorithnﬂ [22]. The histogram in Figure@shows
the time it took to compute the probabilities for all models in the benchmark (less than a minute for 89.45% of
them). The model that needed the longest time was blasted_case_0_b12_2, which is an industrial SAT for-
mula not included in Table[l} This illustrates the dependency that BDDs have on variable/clause order heuristics.

https://github.com/rheradio/VMStatAnal

1)
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Model #Vars. | #Clauses | #Cases per
sample

JHipster [21] 45 104 5994
axTLS 1.5.3 64 96 7198
http://axtls.sourceforge.net/

| Fiasco 2014092821 113 4717 7646
https://os.inf.tu-dresden.de/fiasco/

| DellSPLOT (411 118 2181 9131
uClibc 20150420 298 903 13047
https://www.uclibc.org/

%ToyBox 0.5.2 544 1020 10739
http://landley.net/toybox/

%BusyBox 1.23.2 613 530 18041
https://busybox.net/
EmbToolkit 1.7.0 2331 6437 28866
https://www.embtoolkit.org/

%LargeAutomotive [32] 17365 321897 84522

Table 1: Software configuration models included in the benchmark.

Whereas this model has a medium-size CNF formula (827 variables and 2,725 clauses), the BDD we synthesized
was huge (2,644,383 nodes). Nevertheless, its computation time was still reasonable: 8.29 minutes.

2150-

(0] -

.8100

250-
# 0-I 1 1 1 1 1 1 1 1
N Q Q Q ) N} (S} S (N}
N A Y R RN o

Time to compute variable probabilities (seconds)

Figure 6: Histogram of the time it took to compute variable probabilities for all models in the benchmark.

4.3 Results
4.3.1 RQ1: Scalability and running time

Once each model’s sample size was calculated, the samplers were run to generate the corresponding samples.
The timeout was set to one hour for all generations. In total, 335.6 hours (14 days) of CPU time were needed for
generating the samples (or reaching the timeout).

The scatter plot in Figure [/ represents the generation times for all samplers and models. The absence of
a point in the plot reflects the sampler’s inability to produce the corresponding sample. Figure (8 shows the
percentage of samples that each sampler was able to generate within an hour. Table [2| provides a detailed
summary of the running times for the configuration models.
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Model Spur Quick | Unigen2 | Smarch
Sampler

JHipster 0.03 0.598 2142 3445

axTLS 0.109 1.165

Fiasco 0.075 8.425

DellSPLOT 0.218 2.455 1258

uClibc 1.025 3.861

ToyBox 3.359 4189

BusyBox 11.83 8.858

EmbToolkit 242.4 64.71

LargeAutomotive

Table 2: Sample generation time in seconds for the configuration models (timeout = 1 hour).

As «, B, and w were the same for the whole benchmark, each model’s sample size depended exclusively on
x? degrees of freedom, i.e., on the number of variables whose probability is neither zero nor one. For instance,
110.s8k_3_88 is the model with the greatest amount of variables with 18,570. However, it has an unusual num-
ber of dead features: 14,358. So its sample size was just 14,107 SAT solutions. In contrast, LargeAutomotive has
fewer variables, 17,365, but only 6 of them are dead and 1,686 core. Hence, it needed the largest sample size of
the whole benchmark: 84,522 solutions. Another large configuration model in the benchmark is EmbToolkit,
with 2,331 variables, 619 dead features, 59 core features, and a sample size of 28,866 solutions.

According to the results, Smarch and Unigen2 had severe scalability limitations. The most complex model
Smarch could tackle was blasted_case17, with 77 variables and 235 clauses; and the most difficult one for
Unigen2 was s510_3_2, with 298 variables and 768 clauses.

[
@ Spur - H»m ©@® W e 0
Q.
% Quick H‘m
) Sampler
Sample generation time (seconds)

Figure 9: Box-plot of Spur and QuickSampler’s sample generation times.

Spur and QuickSampler could generate the samples for all models, except for LargeAutomotive. Further-
more, as the box-plot in Figure[9shows, Spur and QuickSampler produced the samples remarkably fast; the first
and third quartiles of Spur’s sample generation time were Q1=0.499 and Q3=15.614 seconds, and QuickSampler’s
quartiles were Q1=3.38 and Q3=9.467.
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Figure 10: Goodness-of-fit p-values for the whole benchmark.
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Figure 11: Percentage of rejected samples per sampler (whole benchmark)

In terms of scalability, there is a huge difference between (i) Spur and QuickSampler, which generate sam-
ples for models with thousands of variables and clauses in a few seconds, and (ii) Unigen2 and Smarch,
which need more than an hour to deal with models above 300 variables and 800 clauses.

4.3.2 RQ2: Uniformity

Figure [17 shows the uniformity rejection percentage per sampler in the goodness-of-fit tests. As oz was set to
0.01, the samplers’ uniformity was rejected whenever the p-values fell below 0.01.

The histogram in Figure[I0]provides more detailed information, as it summarizes the p-values. Spur, Unigen2,
and Smarch exhibited high uniformity because their p-values were close to one in most samples. QuickSampler
presented the opposite behavior, since its p-values were typically near zero.

Table[3|details the p-values for the benchmark’s configuration models; N.A. stands for Not Available, and the
blue and pink colors highlight the cases where the uniformity hypothesis was accepted and rejected, respec-
tively. It is worth remarking that, since o was set to 0.01, in approximately 1% of the samples, the goodness-of-fit
test made a Type | error, misjudging the sampler uniformity because an extremely low p-value happened due
to randomness. For instance, this occurred in the sample that Spur generated for Embtoolkit).
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Model Spur Quick | Unigen2 | Smarch
Sampler

JHipster ~1 ~ 0 ~1 ~1

axTLS ~1 ~ 0

Fiasco ~1 1.11e-16

DellSPLOT ~ 1 0.9462 ~1

uClibc ~1 ~0

ToyBox ~1 ~ 0

BusyBox ~1 ~ 0

EmbToolkit ~ 0 ~ 0

LargeAutomotive

Table 3: Goodness-of-fit p-values for the configuration models.

Spur, Unigen2, and Smarch generate uniform random samples. However, QuickSampler infringes unifor-
mity.

4.4 Threats to validity
4.4.1 Internal validity

Our experimental design discards two potential confounders for evaluating sampler scalability: sampling paral-
lelization and use of preprocessing techniques.

Although any sampler can be run in a multi-core fashion, thus producing samples concurrently, only Unigen2
is specifically tweaked for that. The focus of our evaluation is on the sampling techniques, not on how those
techniques can be parallelized efficiently. Therefore, all samplers were run on a single thread.

There are some methods to preprocess the model Boolean formulas for speeding up further computations.
For example, Ivrri et al. [24] claim that sampling with the formulas’ Minimal Independent Support (MIS) pro-
duces 2-3 orders of magnitude performance improvement. Nevertheless, Plazar et al. [47] empirical results
contradict that, showing no running time difference between sampling from the whole formula or the MIS.
Anyway, we decided to focus on the sampling techniques, not on how any additional preprocessing methods
may impact those techniques.

4.4.2 Construct validity

Regarding sampler uniformity, our experimental results display inner and outer consistency to a great extent.

Concerning inner consistency, as Figure[l0]shows, the p-values that all samplers obtained for every model are
remarkably similar. Spur, Unigen2, and Smarch got p-values ~ 1 in almost all models. In contrast, QuickSampler
got p-values ~ 0 in 85.71% of all models, but p-values ~ 1 in the remaining ones. We found that QuickSampler’s
p-values ~ 1 corresponded to the smallest models, with a median number of variables and clauses equal to 51.5
and 144.5, respectivelly. That is, QuickSampler only exhibited uniformity for the most trivial models.
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Regarding outer consistency, Plazar et al. [47] reported an empirical evaluation of Unigen (the previous
version of Unigen2) and QuickSampler. Their results show that Unigen meets uniformity but does not scale, and
QuickSampler scales but does not provide any uniformity guarantee. Our results totally agree with Plazar et al.’s
findings.

4.4.3 External validity

Our study’s generalizability is supported by (i) the great variety and volume of the benchmark, and (ii) the low
variance in the experimental results, i.e., the consistency of the execution times and p-values throughout every
model in the benchmark.

5 Conclusions

The number of SAT solutions that configuration models encompass is typically so large that most analyses cannot
be performed neither examining every valid configuration, nor calling a SAT solver massively. Statistical inference
opens an alternative way to address these problems by working with a much more tractable sample that later
supports generalizing the results obtained to the population. However, the laws of statistical inference impose
an indispensable requirement: samples must be collected at random, i.e., the configuration space needs to be
covered uniformly.

We have presented a goodness-of-fit test to verify sampler uniformity, which requires a reduced sample size,
even for the largest models and the most strict reliability test arrangements. As a result, we have reported the
first empirical sampler uniformity evaluation on large models. According to our evaluation, there is a sampler
named Spur, which generates uniform random samples and also scales for large configuration models. Hence,
the power of statistical inference is ready to be unleashed for analyzing complex configurable software systems.

Material

Following open science’s good practices, our software artifacts are available publicly.

e The code scripts to (i) calculate each model’s sample size, (ii) run the samplers, and (iii) analyze the results
are available at |https://github.com/rheradio/sat_sampling

e The CNF and BDD encodings of the models, together with all generated samples and statistics are available
at https://doi.org/10.5281/zenodo.3757091
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