
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/344749967

Uniform and Scalable SAT-Sampling for Configurable Systems

Conference Paper · October 2020

DOI: 10.1145/3382025.3414951

CITATIONS

2
READS

125

4 authors:

Some of the authors of this publication are also working on these related projects:

COPAS- View project

PhD in Computer Engineering: Product Lines, CMDB and Generative Programming View project

Ruben Heradio

National Distance Education University

99 PUBLICATIONS 1,214 CITATIONS

SEE PROFILE

David Fernandez-Amoros

National Distance Education University

43 PUBLICATIONS 337 CITATIONS

SEE PROFILE

José A. Galindo

Universidad de Sevilla

70 PUBLICATIONS 768 CITATIONS

SEE PROFILE

David Benavides

Universidad de Sevilla

129 PUBLICATIONS 4,373 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ruben Heradio on 19 October 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/344749967_Uniform_and_Scalable_SAT-Sampling_for_Configurable_Systems?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/344749967_Uniform_and_Scalable_SAT-Sampling_for_Configurable_Systems?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/COPAS?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/PhD-in-Computer-Engineering-Product-Lines-CMDB-and-Generative-Programming?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruben-Heradio?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruben-Heradio?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National-Distance-Education-University?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruben-Heradio?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Fernandez-Amoros?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Fernandez-Amoros?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National-Distance-Education-University?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Fernandez-Amoros?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose-Galindo-14?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose-Galindo-14?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Sevilla?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose-Galindo-14?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Benavides-7?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Benavides-7?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Sevilla?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Benavides-7?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruben-Heradio?enrichId=rgreq-2cfcf0a62c89e9af2c786d2f7c934b56-XXX&enrichSource=Y292ZXJQYWdlOzM0NDc0OTk2NztBUzo5NDgzMzkyMjI3Nzc4NTZAMTYwMzExMzA5ODIwMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Pre-
prin

tUniform and Scalable SAT-Samplingfor Configurable Systems
Ruben Heradio*, David Fernandez-Amoros†, José A. Galindo‡, David Benavides§

October 19, 2020

Abstract

Several relevant analyses on configurable software systems remain intractable because they require ex-amining vast and highly-constrained configuration spaces. Those analyses could be addressed through statis-tical inference, i.e., working with a much more tractable sample that later supports generalizing the resultsobtained to the entire configuration space. To make this possible, the laws of statistical inference imposean indispensable requirement: each member of the population must be equally likely to be included in thesample, i.e., the sampling process needs to be “uniform”. Various SAT-samplers have been developed forgenerating uniform random samples at a reasonable computational cost. Unfortunately, there is a lack ofexperimental validation over large configuration models to showwhether the samplers indeed produce gen-uine uniform samples or not. This paper (i) presents a new statistical test to verify to what extent samplersaccomplish uniformity and (ii) reports the evaluation of four state-of-the-art samplers: Spur, QuickSampler,Unigen2, and Smarch. According to our experimental results, only Spur satisfies both scalability and unifor-mity.

1 Introduction

Generating SAT solutions at random is a problemof critical importance in a variety of domains: software productline analysis and configuration [42, 30, 37], software testing [9, 16, 48, 47], integrated circuit simulation andverification [54, 40, 23], etc.To grasp this problem’s relevancy and complexity, let us present an example taken from the software productlines domain. BusyBox1 is a software tool that replaces many standard GNU/Linux utilities with a single smallexecutable, thus providing an environment customized for a diversity of embedded systems. To achieve size-optimization, BusyBox is remarkably modular, supporting the inclusion/exclusion of 613 features at compiletime. These features and their interrelationships are specified with a configuration language named Kconfig2.To guarantee that every valid configuration satisfies all dependencies, the Kconfig model is translated into a
*rheradio@issi.uned.es†david@issi.uned.es‡jagalindo@us.es§benavides@us.es1https://busybox.net/2https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

1

https://busybox.net/
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

Pre-
prin

tBoolean formula that is then processed with a logic engine [6, 18] (e.g., a SAT solver [8]). Therefore, a validconfiguration corresponds to a satisfiable assignment of the formula, also called, a SAT solution [47] or awitness[9]. As a consequence of the inter-feature dependencies, the space of valid configurations (7.428 ·10146) is a tinyportion of the whole configuration space (2613): only 2.185 · 10−36% of the possible configurations are valid3.Nevertheless, the population of valid configurations is still huge, and consequently, many relevant issues cannotbe handled by examining every valid configuration.For instance, Halin et al. [21] adopted an exhaustive strategy to test the JHipster4 system, checking all itsvalid configurations. JHipster is a code generator for web applications with only 45 selectable features thatcan produce a total of 26,256 valid configurations. Checking this modest configuration space with the INRIA
Grid’50005 required 4,376 hours of CPU time (∼ 182 days), and 5.2 terabytes of disk space.Recently, several researchers have advocated approaching this and other issues related to configurable sys-tems through statistical inference [50, 38, 53, 20, 26, 29, 2, 5]; that is, working with a much more tractable
sample that later supports generalizing the results obtained to the population. An essential requirement thatany sample must satisfy to be genuinely representative of the population is that it is collected at random [27].In other words, each member of the population must be equally likely to be included in the sample. Authorsoften use the term uniform random sampling [47, 49] to emphasize this idea.A naive approach to get such a sample would be (i) generating a random configuration set without consid-ering the feature dependencies, and then (ii) checking with a logic engine if the configurations conform to thedependencies. Unfortunately, and as mentioned above, feature dependencies shrink the configuration spaceextraordinarily, and so getting a valid configuration at pure random is extremely unlikely. As a result, more elabo-rated algorithms have been proposed to generate uniform random samples at a reasonable computational cost.Moreover, verifying that these algorithms and their actual implementations indeed generate genuine uniformsamples is a challenge by itself, and thus distinct procedures have been proposed to certify sampler uniformity.A severe shortcoming of available uniformity certification procedures is that they require gigantic samplesizes to produce reliable results [16, 1, 9]. As a consequence, sampler uniformity has been checked only onminiature models so far, which hinders the external validity of the results. This paper presents a new statisticaltest that overcomes this limitation by reducing the sample size enormously (∼ 99%). The paper also reports theempirical evaluation of the scalability and uniformity of four state-of-the-art samplers on configuration modelswith up to 18,570 features: Spur [1], QuickSampler [16], Unigen2 [11, 10], and Smarch [43]. The obtained resultsreveal that only Spur satisfies both scalability and uniformity.The remaining of this paper is organized as follows: Section 2 overviews prior research on uniform ran-dom samplers and techniques to assess to what extent samplers accomplish uniformity. Section 3 details ourgoodness-of-fit test. Section 4 applies our test to evaluate Spur, QuickSampler, Unigen2, and Smarch on a bench-mark composed of 218 real models. Finally, Section 5 summarizes the main conclusions of our work.

3https://github.com/rheradio/VMStatAnal4https://www.jhipster.tech/5https://www.grid5000.fr/

2

https://github.com/rheradio/VMStatAnal
https://www.jhipster.tech/
https://www.grid5000.fr/

Pre-
prin

t2 Uniform random sampling: state-of-the-art

As an illustrative example of the relevance that SAT solution sampling has to approach problems related to con-figurable software systems, in the 23rd International Systems and Software Product Line Conference (SPLC),there was a challenge dedicated specifically to this topic and entitled “Product Sampling for Product Lines: TheScalability Challenge” [46]. Moreover, different papers have been recently published on uniform random sam-pling, and other sorts of sampling such as t-wise, in SPLC [52, 44, 37] and the International Working Conferenceon Variability Modelling of Software-Intensive Systems (VaMoS) [31].
2.1 Uniform random samplers

The following sections summarize the foremost strategies to generate uniform random samples for a modelencoded as a Boolean formulaϕ. It is worth remarking that this paper adopts the sampling terminology typicallyused in statistics (e.g., see [12, 27]): a sample is a collection of cases. In this paper context, a case is a SAT solutionof ϕ. The sample size is the number of cases in the sample.
2.1.1 Atomic mutations

QuickSampler6 [16] proposes a heuristic procedure to gain scalability by minimizing the number of calls to aconstraint solver. It starts by generating a random variable assignment without taking into account the formulaconstraints. Logically, the assignment often violates some constraints and thus it is unsatisfiable. So, QuickSam-pler calls the Z3 solver [15] to fix the assignment by providing a MAX-SAT solution. Then, QuickSampler flips thevalue of each variable and calls again Z3 to get the correspondent SAT assignment. The differences between thevariable values of the original and flipped SAT assignments are called atomicmutations. By combining thosemu-tations, QuickSampler quickly generates many new assignments without calling the solver because, accordingto the experiments reported by QuickSampler’s authors, those combinations usually happen to be satisfiable.
2.1.2 Hashing-based sampling

Several techniques divide the space of SAT solutions into small “cells” of approximately the same size using rindependent hash functions. Accordingly, sampling is done by choosing a cell at random, and then generatinga satisfying assignment for that cell using a SAT solver. A critical point of these techniques is determining the“right” r value. For instance, Bellare et al. [7] showed that an r equal to the number of formula variablesguarantees uniformity. However, Chakraborty et al. [11] reported that such r does not scale in practice; incontrast, r = 3 scales better and ensures near-uniformity. Unigen27 [10] develops these ideas further, givingstronger uniformity guarantees.
2.1.3 Counting-based sampling

In Section 7.1.4 of [28], Knuth showed how to accomplish uniform random sampling by subsequently partitioningthe SAT solution space on variable assignments, and then counting the number of solutions of the resulting parts.
6https://github.com/RafaelTupynamba/quicksampler7https://bitbucket.org/kuldeepmeel/unigen

3

https://github.com/RafaelTupynamba/quicksampler
https://bitbucket.org/kuldeepmeel/unigen

Pre-
prin

tConceptually, the procedureworks as follows: first, the number of solutions #SAT(ϕ) of the input formulaϕwith
v variablesx1, x2, . . . , xv is computed. Then, the number of solutionswherex1 is true is counted : #SAT(ϕ∧x1).Therefore, x1 follows a Bernoulli distribution with probability p1 = #SAT(ϕ∧x1)

#SAT(ϕ) , and accordingly, its randomassignment is generated. For instance, imagine that x1 is assigned to false. Then, x2 would follow a Bernoullidistribution with probability p2 = #SAT(ϕ∧x̄1∧x2)
#SAT(ϕ∧x̄1) , and it would be randomly assigned. The procedure advancesuntil the last variable xv is assigned, and thus the random solution is completed.The original algorithm by Knuth is specified on BDDs very efficiently, as the probabilities required for all thepossible SAT solutions are computed just oncewith a single BDD traversal, and then reused every time a solutionis generated. Nevertheless, Knuth’s algorithm can be easily adapted to SAT technology. In particular, Spur8 [1]and Smarch9 [43] rely on a #SAT-solver named sharpSAT [51].

2.2 Methods for testing sample uniformity

The following methods have been devised to test the uniformity of a random sampler S:
2.2.1 Method 1: Generate a massive sample with S, and compare it with another one obtained simulating

an ideal uniform sampler

This is themost common technique in the literature [1, 16, 47, 10, 49]. First, the total numbern of SAT solutions iscounted for the Boolean formula ϕ, typically using a #SAT-solver. Having n, the generation of a uniform samplewith size s is simulated as follows: imagine that numbers 1, 2, . . . , n are put into a box; then, s numbers aresampled with replacement from the box, guaranteeing that the probability each number has to be extracted is
1
n . For example, JHipster encompasses 26,256 valid configurations [21]. Figure 1 shows the histogram of a sam-ple ten times greater than the number of configurations, which has been obtained sampling with replacementfrom the set {1, 2, . . . , 26256}. The x-axis depicts numbers’ occurrences, i.e., there are numbers that appear
0, 1, . . . , 27 times in the sample; the y-axis shows how frequent are those occurrences in the sample. As ex-pected, most numbers appear ten times (see the red vertical line in Figure 1), however, and due to randomness,some numbers appear more frequently than others.

0

1000

2000

3000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Numbers' occurrences in the sample

F
re

qu
en

cy
 o

f t
he

nu
m

be
rs

' o
cc

ur
re

nc
es

Sample size = #SAT Solutions x 10 = 262560

Figure 1: Simulated uniform random sample of the JHipster configuration model
8https://github.com/ZaydH/spur9https://github.com/jeho-oh/Kclause_Smarch

4

https://github.com/ZaydH/spur
https://github.com/jeho-oh/Kclause_Smarch

Pre-
prin

tAnother sample with size s, in this case composed of SAT solutions, is then generated with the sampler S.For this sample, a counterpart histogram to Figure 1 is obtained, representing how often solutions appear in thesample.Finally, the uniformity of S is verified by measuring the distance between both histograms, using, for in-stance, the Kullback-Leibler divergence [1].Unfortunately, this method has a severe limitation: it does not scale except for formulas with a reducednumber of SAT-solutions because, to produce reliable results, s needs to be much larger than n (see [1, 16] foran explanation). For example, Dutra et al. [16] propose s ≥ 5n. As the number of solutions grows exponentiallywith the number of variables of ϕ, the method only works for the simplest models with just a few features.
2.2.2 Method 2: Assume the existence of a uniform samplerU, and compare the samples generated by both

S and U

. Chakraborty andMeel [9] proposed this method, providing its corresponding implementation as well, called
barbarik10. The method makes a strong supposition: there is available a samplerU that is known to be uniform.Thus two samples of the same size s are generated with S and U and, depending on the distance between thesamples, barbarik decides if S is approximately uniform.The key of the method is how to define “approximately” for reaching a balance between uniformity andsample size, i.e., for avoiding the large s that Method 1 requires. Two parameters, called tolerance ε and intoler-ance η, support adjusting the uniformity criterion. A sampler is uniformwhenever the probability p1, p2, . . . , pnof all the n SAT solutions is exactly 1

n .Barbarik relaxes this definition, proposing that a sampler is additive almost-uniform if p1, p2, . . . , pn ∈[
1−ε
n , 1+ε

n

]. Moreover, a sampler is η-far from uniformity if ∣∣∑n
i=1 pi −

1
n

∣∣ ≥ η.Chakraborty andMeel claim that s depends on ε and η exclusively, but not on n. In particular, they state thata uniformity test with significance level α = 0.1 (i.e., 0.9 probability of accepting the uniformity of a samplerwhen it is genuinely uniform) and power β = 0.1 (i.e., 0.9 probability of rejecting the uniformity of a samplerthat indeed it is not uniform) is accomplished when ε = 0.6 and η = 0.9, requiring a sample size of 1, 729, 750.Unfortunately, they do not provide a detailed formal proof for these questions in [9].An evident weakness of this method is the necessity of a sampler U with certified uniformity as a supportlever. It is worth noting that, although an algorithm can be proven to generate uniform samples theoretically,some of its implementations may have errors. In other words, every sampling program needs to be tested, andthus Method 2 implicitly assumes the existence of another reliable uniformity testing method.
2.2.3 Method 3: Compare the theoretical variable probabilities in ϕwith the empirical variable frequencies

in a sample generated with S

Plazar et al.’s method [47] begins computing the theoretical probability each variable x has to appear in a SATsolution. To do so, the procedure introduced in Section 2.1.3 is adopted, calling a #SAT solver repeatedly, onetime per variable. #SAT(ϕ) gives the total number of SAT solutions, and #SAT(ϕ ∧ x) calculates the number of
solutions where x is true. Hence, the probability of x is p = #SAT(ϕ∧x)

#SAT(ϕ) . Likewise, if x is true t times in a sample
10https://github.com/meelgroup/barbarik

5

https://github.com/meelgroup/barbarik

Pre-
prin

tof size s, its empirical frequency is f = t
s . Then, the deviation between p and f is d = 100 · |p−f |p . Finally,Plazar et al. propose two thresholds for d: (i) when d ≤ 10 for all variables, the deviations are very low, andthus sampler uniformity is accepted; (ii) when d ≥ 50 for some variables, they show very high deviations, andso uniformity is rejected. Regarding the sample size, Plazar et al. propose always using s ∼ 106, independentlyof the number of variables of ϕ (no formal justification is given for this specific value in [47]).Regrettably, this method often throws false negatives for formulas where many variables have low prob-abilities. For instance, let us suppose that, for some variable, p = 0.01. Then, a genuine uniform samplermight easily generate a sample where f is slightly different just due to randomness, e.g., f = 0.015. Therefore,

d = 100 · |0.01−0.015|
0.01 = 50, and thus the sampler uniformity would be rejected. The chances that these typesof wrong diagnoses happen increases with the number of low-probability variables, and it is worth noting thatreal models with numerous low-probability variables are not “corner cases”; for example, in three out of theseven configuration models analyzed in [22], more than 46% of their variables have p ≤ 0.05: the open-sourceproject Fiasco v2014092821, the Dell laptop configurator, and the Automotive 02 system.A major shortcoming of all existing uniformity testing methods is the large sample size they need. For in-stance, in [1] and [49], Method 1 is applied on a model called blasted_case110 with 287 variables, requiring

s = 4 · 106 SAT solutions. In [9], Method 2 is used on blasted_case110 as well, needing this time 1, 729, 750SAT solutions to ensure probability errors of Type 1 α = 0.1 and Type 2 β = 0.1. As we will see in Section 4,our method provides stronger test guarantees (α = 0.01 and β = 0.01) for blasted_case110 with a minimalsample size of 13,027 solutions (i.e., a 99.25% sample size reduction with respect to Method 2).
Summary
Three methods have been proposed to verify samplers’ uniformity. Methods 1 and 3 only provide anumerical distance. Method 2 gives the statistical distribution of the distance as well, thus supportingthe estimation of Type I and II errors.Unfortunately, all methods require a huge sample size, thus uniformity has been tested so far on trivialmodels, with less than 100 features.

3 Assessing the uniformity of SAT solution samplers

Figure 2 sketches the method we propose for verifying if a sampler generates uniform random samples of amodel encoded as a Boolean formulaϕ. Similarly toMethod 3 discussed in Section 2.2.3, our approach compares
empirical information about a sample with theoretical information about the whole population of SAT solutionsthat the model represents. Nevertheless, instead of using the limited Method 3 deviation measure, we use astatistical goodness-of-test that (i) has a robust mathematical basis, (ii) estimates the statistical significance ofthe results (i.e., how generalizable they are), and (iii) supports adjusting the sample size according to precisestatistical criteria (i.e., Type I and II errors, and effect size). First, Section 3.1 explains this statistical goodness-of-fit test. Afterwards, Section 3.2 discusses how to determine a convenient sample size for the goodness-of-fittest.

6

Pre-
prin

t

Sampler

Sample

Model
 𝜑𝜑

Population
characterization

Variable
frequency
distribution

Variable
probability
distribution

Goodness-of-fit
test

Accept/Reject
uniformity

Sample
characterization

Empirical information Theoretical information

Figure 2: Proposed method for verifying if a sampler generates uniform samples of a model ϕ
3.1 Goodness-of-fit testing

In statistics, the methods for examining how well a sample agrees with the population distribution are knownas goodness-of-fit testing [14]. Those methods require characterizing both the sample and the population interms of a quantitative measure. In particular, our characterization will be based on the variable probabilitydistribution.Computing the distribution of the variable frequencies in a sample is straightforward: traverse the sampleand calculate, for each variable, the proportion of cases where the variable is true. Nevertheless, obtainingthe variable probabilities for the whole population is more complicated. In Section 2.2.3, we saw that thoseprobabilities can be computed by calling a #SAT solver repeatedly; in particular, if n is the number of variables of
ϕ, the #SAT solver needs to be calledn+1 times, i.e., once to get #SAT(ϕ), andn times to compute #SAT(ϕ∧xi).It is worth noting that the #SAT problem is computationally even more expensive than the SAT one [8], and so#SAT-solver calls often take considerably more time than SAT-solver calls.Fortunately, much more efficient methods can often be applied to calculate variable probabilities in largeconfiguration models. For instance, (i) if ϕ has n variables and it is encoded as a Binary Decision Diagram (BDD)with v nodes, Heradio et al.’s algorithm [22] computes the probabilities inO(nv) time complexity11; or (ii) if theconfiguration model is specified as a feature modelwith n features,m of which appear in crosstree-constraints,Fernandez-Amoros et al.’s algorithm [17] does it inO(n22m).Once the probabilities are known, the goodness-of-fit can be tested graphically. For example, the density

11The main weakness of BDDs is finding good variable and clause orders that minimize the computer memory required for the BDD.Although finding optimal orders is an NP-problem, there are several strategies to handle this issue heuristically [35, 3, 4, 39, 36].

7

Pre-
prin

tplot in Figure 3 provides an exploratory goodness-of-fit analysis of four samples generated with Spur, Quick-sampler, Unigen2, and Smarch for the JHipster configuration model; every sample is composed of 5,994 SATsolutions (Section 3.2 provides a justification for this specific sample size). Figure 3 represents the distributionof the absolute differences between every pair fi and pi corresponding to the frequency and probability of thevariable xi in the sample and the population, respectively. The samples generated with Spur, Unigen2, andSmarch match the population distribution adequately, as all differences are close to zero. In contrast, Quick-Sampler’s sample departs considerably from the population distribution because it produces large differences,some of them even greater than 0.5.

0

50

100

0.
00

0.
25

0.
50

0.
75

1.
00

Variable probabilities' absolute difference

D
en

si
ty

Spur

0
1
2
3
4

0.
00

0.
25

0.
50

0.
75

1.
00

Variable probabilities' absolute difference

D
en

si
ty

Quicksampler

0

50

100

150

0.
00

0.
25

0.
50

0.
75

1.
00

Variable probabilities' absolute difference

D
en

si
ty

Unigen2

0

50

100

0.
00

0.
25

0.
50

0.
75

1.
00

Variable probabilities' absolute difference

D
en

si
ty

Smarch

Figure 3: Density plot showing the distribution of the absolute difference between the population and samplevariable probabilities for the JHipster configuration model
After exploring the samples goodness-of-fit graphically, it is desirable to advance towards amore formal testthat provides an accurate numerical quantification. For that, the distance between the sample and populationdistributions is measured with the Jensen-Shannon divergence [34].Let ϕ be the Boolean formula that encodes a model with n variables. To compare variable frequencies andprobabilities, two vectors F and P are considered: (i) F = [f1, . . . , fn] stores the empirical frequencies, i.e.,

fi is how many SAT solutions in the sample have variable xi assigned to true, divided by the sample size; (ii)
P = [p1, . . . , pn] stores the variable probabilities.To avoid worthless comparisons, i-elements with pi = 0 or pi = 1 are removed from F and P . In SPLterminology, thesexi variables are called dead and core features, respectively [45]. As all solutions in the sampleare guaranteed to be valid, the empirical frequencies of dead and core features are necessarily 0 and 1 as well.Then, the Jensen-Shannon divergence between F and P , denotedD(F, P), is calculated as:

D(F, P) =
∑

∀i|0<pi<1

filog2

fi
fi
2 + pi

2

+
∑

∀i|0<pi<1

pilog2

pi
pi
2 + fi

2

(1)
D(F, P) measures to what extent the difference between F and P is greater than expected by chance if

F corresponded to a uniform random sample. In the extreme cases,D(F, P) = 0 when F totally matches P ,andD(F, P) = 1 when the F completely disagrees with P .
8

Pre-
prin

tNevertheless,D is a mere distance, i.e., we cannot tell ifD is significantly greater than expected due to ran-domness. Therefore, a statistical inference test is needed to quantify how generalizable the obtained distanceis, i.e., a test that estimates the probability of a specific value of D(F, P) assuming that the sampler is gen-uinely uniform. In the case that the estimated probability is excessively low, it is unlikely that the disagreementbetween F and P is due to chance, and so we can conclude that the sampler is not uniform.Let s be the sample size, andm the number of elements inP that are neither zero nor one (e.g., the JHipstermodel has 45 features, there are seven core features and no dead features, som = 38). According to the proofgiven by Grosse et al. in Section 4.C of [19], 2s(ln2)D(F, P) has aχ2 distributionwithm−1 degrees of freedom.As a result, a Chi-Squared goodness-of-fit test [14] built upon the statistic 2s(ln2)D(F, P)will help us to decidewhether the sampler is uniform.
Summary
Samplers’ uniformity can be checked with a standard Chi-Squared goodness-of-fit test built upon theJensen-Shannon divergence of the variable probabilities.

3.2 Sample size

In contrast to typicalNull Hypothesis Significance Tests (NHSTs), where the null hypothesisH0 states the oppositeto what the researcher pursues to demonstrate, goodness-of-fit tests are a special case of NHSTs [14] whereH0is: “the sample agrees with the population”. Accordingly, the reliability of these tests depends on the followingparameters:
• The significance level α sets the probability of making a Type I error, i.e., the probability of rejecting H0when it is indeed true. It is worth noting that α is also the threshold for rejectingH0 (i.e.,H0 is rejectedwhenever p-value< α).
• β sets the probability of making a Type II error, i.e., the probability of accepting a falseH0.
WhenH0 is false, it is false to some degree. That degree is measured by another parameter called effect size[33]. In particular, Cohen [13] proposes the index w for measuring the effect size in Chi-Squared tests. As a ruleof thumb, w values around 0.1, 0.3, and 0.5 correspond to small,medium, and large effect sizes, respectively.Interestingly, sample size, effect size, α, and β have an intimate relationship in NHSTs: given any three ofthem, the fourth can be determined. In Section 7.3 of [13], Cohen provides different power tables to calculatethe minimum sample size required to ensure the reliability of a Chi-Squared test given the values of α, β, w,and χ2’s degrees of freedom. Nowadays, many statistical packages provide those tables, e.g., see Chapter 10 of[25].In Section 3.1 we saw that the goodness-of-fit of any sample from the JHipster configuration model can beundertaken with a Chi-Squared test withm − 1 = 37 degrees of freedom. Then, according to Cohen’s powertables, the required sample size is 5,994 cases when α = 0.01, β = 0.01, and w = 0.1.

9

Pre-
prin

tSummary
The sample size depends on: (i) the degrees of freedomof the Chi-Squared test, and (ii) three parametersthat accommodate the reliability of the test: α, β, and w.

4 Empirical evaluation of samplers’ scalability and uniformity

This paper’s primary goal is to determine if there is an available sampler that fulfills both scalability and unifor-mity. To that end, four state-of-the-art samplers were tested experimentally:
1. Spur12 [1].
2. QuickSampler13 [16].
3. Unigen214 [11, 10].
4. Smarch15 [43].

4.1 Research questions

Specifically, our experimental validation targets two research questions:
• RQ1: Scalability and running time. Are Spur, QuickSampler, Unigen2, or Smarch able to generate samples
out of any size models with a moderate running time?

• RQ2: Uniformity. Do Spur, QuickSampler, Unigen2, or Smarch generate uniform SAT solutions?

4.2 Experimental setup

The samplers were tested against a benchmark composed of 218 models encoded as Boolean formulas in Con-
junctive Normal Form (CNF). A CNF formula is a conjunction of clauses, where each clause is a disjunction of
literals [8]. The scatter plot in Figure 4 describes the models in terms of the number of variables and clauses(the points that represent the largest models have been labelled).Each model’s sample size was determined with the procedure described in Section 3.2. In particular, the Rpackage pwr16 [25] was used to perform Cohen’s power tables calculations. To ensure the highest reliability ofthe results, we set α = 0.01, β = 0.01, andw = 0.1. That is, the χ2 test confidence level was fixed to 99%, thepower to 99%, and the effect size to small.The histogram in Figure 5 describes the distribution of the obtained sample sizes. It is worth noting that,as Section 2.2 discusses, prior methods for testing samplers’ uniformity fail to test non-trivial models because

12https://github.com/ZaydH/spur13https://github.com/RafaelTupynamba/quicksampler14https://bitbucket.org/kuldeepmeel/unigen15https://github.com/jeho-oh/Kclause_Smarch16https://cran.r-project.org/web/packages/pwr

10

https://github.com/ZaydH/spur
https://github.com/RafaelTupynamba/quicksampler
https://bitbucket.org/kuldeepmeel/unigen
https://github.com/jeho-oh/Kclause_Smarch
https://cran.r-project.org/web/packages/pwr

Pre-
prin

t 107.sk_3_90
110.sk_3_88 19.sk_3_48

 35.sk_3_52 77.sk_3_44
84.sk_4_77

LargeAutomotive

0

50000

100000

150000

200000

250000

300000
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

16
00

0
17

00
0

18
00

0
19

00
0

#Variables

#C
la

us
es

Figure 4: Size, in terms of the number of variables and clauses, of the benchmark models.
they need sample sizes greater than 106, even for models with less than 100 variables. In contrast, the samplesize that our method requires ranges from 4,002 for the smallest model to 85,422 configurations for the biggestone.

a = 0.01
b = 0.01
w = 0.1

0
5

10
15
20

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0
40

00
0

45
00

0
50

00
0

55
00

0
60

00
0

65
00

0
70

00
0

75
00

0
80

00
0

85
00

0

Sample size (#cases per sample)

#S
am

pl
es

Figure 5: Histogram of the sample sizes for α = β = 0.01 and w = 0.1

Nine of the 218 models represent configurable software systems. The remaining models are industrial SATformulas (mostly modeling integrated circuits) that are typically used as a benchmark in the SAT-sampling lit-erature [10, 1, 47]. Table 1 describes the nine configuration models (the largest model is usually known as
Automotive02, e.g., see [32]).The samplers were run on an Intel(R) Core(TM) i7-6700HQ, 2.60GHz, 16GB RAM, operating Linux Ubuntu19.10. They were executed on a single thread (i.e., with no parallelization), and without considering any Booleanformulas’ preprocessing, such as formula’sminimal independent support [24].Variable probabilities were computed with Heradio et al.’s algorithm17 [22]. The histogram in Figure 6 showsthe time it took to compute the probabilities for all models in the benchmark (less than a minute for 89.45% ofthem). The model that needed the longest time was blasted_case_0_b12_2, which is an industrial SAT for-mula not included in Table 1. This illustrates the dependency that BDDs have on variable/clause order heuristics.

17https://github.com/rheradio/VMStatAnal

11

https://github.com/rheradio/VMStatAnal

Pre-
prin

tModel #Vars. #Clauses #Cases per
sample

JHipster [21] 45 104 5994axTLS 1.5.3 64 96 7198http://axtls.sourceforge.net/Fiasco 2014092821 113 4717 7646https://os.inf.tu-dresden.de/fiasco/DellSPLOT [41] 118 2181 9131uClibc 201 50420 298 903 13047https://www.uclibc.org/ToyBox 0.5.2 544 1020 10739http://landley.net/toybox/BusyBox 1.23.2 613 530 18041https://busybox.net/EmbToolkit 1.7.0 2331 6437 28866https://www.embtoolkit.org/LargeAutomotive [32] 17365 321897 84522
Table 1: Software configuration models included in the benchmark.

Whereas this model has a medium-size CNF formula (827 variables and 2,725 clauses), the BDD we synthesizedwas huge (2,644,383 nodes). Nevertheless, its computation time was still reasonable: 8.29 minutes.

0

50

100

150

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

Time to compute variable probabilities (seconds)

#M
od

el
s

Figure 6: Histogram of the time it took to compute variable probabilities for all models in the benchmark.

4.3 Results

4.3.1 RQ1: Scalability and running time

Once each model’s sample size was calculated, the samplers were run to generate the corresponding samples.The timeout was set to one hour for all generations. In total, 335.6 hours (14 days) of CPU time were needed forgenerating the samples (or reaching the timeout).The scatter plot in Figure 7 represents the generation times for all samplers and models. The absence ofa point in the plot reflects the sampler’s inability to produce the corresponding sample. Figure 8 shows thepercentage of samples that each sampler was able to generate within an hour. Table 2 provides a detailedsummary of the running times for the configuration models.
12

http://axtls.sourceforge.net/
https://os.inf.tu-dresden.de/fiasco/
https://www.uclibc.org/
http://landley.net/toybox/
https://busybox.net/
https://www.embtoolkit.org/

Pre-
prin

t107.sk_3_90
110.sk_3_88

19.sk_3_4835.sk_3_52 77.sk_3_44 84.sk_4_77

107.sk_3_90

110.sk_3_88

19.sk_3_4835.sk_3_52 77.sk_3_44 84.sk_4_77

S
pur

Q
uickS

am
pler

U
nigen2

S
m

arch

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

17
00

0

18
00

0

19
00

0

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

#Variables

S
am

pl
e

ge
ne

ra
tio

n
tim

e
(s

ec
on

ds
)

Figure 7: Sample generation time in seconds for whole benchmark (timeout = 1 hour).

Smarch

Unigen2

QuickSampler

Spur

0 10 20 30 40 50 60 70 80 90 10
0

%Samples

S
am
pl
er

Figure 8: Percentage of samples that each sampler was able to generate.

13

Pre-
prin

tModel Spur Quick Unigen2 Smarch
Sampler

JHipster 0.03 0.598 2.142 3445axTLS 0.109 1.165 timeout timeoutFiasco 0.075 8.425 timeout timeoutDellSPLOT 0.218 2.455 1258 timeoutuClibc 1.025 3.861 timeout timeoutToyBox 3.359 4.189 timeout timeoutBusyBox 11.83 8.858 timeout timeoutEmbToolkit 242.4 64.71 timeout timeoutLargeAutomotive timeout timeout timeout timeout

Table 2: Sample generation time in seconds for the configuration models (timeout = 1 hour).
As α, β, andw were the same for the whole benchmark, each model’s sample size depended exclusively on

χ2 degrees of freedom, i.e., on the number of variables whose probability is neither zero nor one. For instance,
110.sk_3_88 is the model with the greatest amount of variables with 18,570. However, it has an unusual num-ber of dead features: 14,358. So its sample size was just 14,107 SAT solutions. In contrast, LargeAutomotive hasfewer variables, 17,365, but only 6 of them are dead and 1,686 core. Hence, it needed the largest sample size ofthe whole benchmark: 84,522 solutions. Another large configuration model in the benchmark is EmbToolkit,with 2,331 variables, 619 dead features, 59 core features, and a sample size of 28,866 solutions.According to the results, Smarch and Unigen2 had severe scalability limitations. The most complex modelSmarch could tackle was blasted_case17, with 77 variables and 235 clauses; and the most difficult one forUnigen2 was s510_3_2, with 298 variables and 768 clauses.

Quick
Sampler

Spur

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

Sample generation time (seconds)

S
am

pl
er

Figure 9: Box-plot of Spur and QuickSampler’s sample generation times.
Spur and QuickSampler could generate the samples for all models, except for LargeAutomotive. Further-more, as the box-plot in Figure 9 shows, Spur and QuickSampler produced the samples remarkably fast; the firstand third quartiles of Spur’s sample generation timewereQ1=0.499 andQ3=15.614 seconds, andQuickSampler’squartiles were Q1=3.38 and Q3=9.467.

14

Pre-
prin

tSpur QuickSampler Unigen2 Smarch

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0

100

200

p-values

#S
am
pl
es

Figure 10: Goodness-of-fit p-values for the whole benchmark.

Smarch

Unigen2

QuickSampler

Spur

0 10 20 30 40 50 60 70 80 90 10
0

%Rejected samples

S
am

pl
er

Figure 11: Percentage of rejected samples per sampler (whole benchmark)
Summary
In terms of scalability, there is a huge difference between (i) Spur andQuickSampler, which generate sam-ples for models with thousands of variables and clauses in a few seconds, and (ii) Unigen2 and Smarch,which need more than an hour to deal with models above 300 variables and 800 clauses.

4.3.2 RQ2: Uniformity

Figure 11 shows the uniformity rejection percentage per sampler in the goodness-of-fit tests. As α was set to0.01, the samplers’ uniformity was rejected whenever the p-values fell below 0.01.The histogram in Figure 10 providesmore detailed information, as it summarizes the p-values. Spur, Unigen2,and Smarch exhibited high uniformity because their p-values were close to one in most samples. QuickSamplerpresented the opposite behavior, since its p-values were typically near zero.Table 3 details the p-values for the benchmark’s configurationmodels; N.A. stands for Not Available, and theblue and pink colors highlight the cases where the uniformity hypothesis was accepted and rejected, respec-tively. It is worth remarking that, sinceαwas set to 0.01, in approximately 1% of the samples, the goodness-of-fittest made a Type I error, misjudging the sampler uniformity because an extremely low p-value happened dueto randomness. For instance, this occurred in the sample that Spur generated for Embtoolkit).

15

Pre-
prin

tModel Spur Quick Unigen2 Smarch
Sampler

JHipster ∼ 1 ∼ 0 ∼ 1 ∼ 1axTLS ∼ 1 ∼ 0 N.A. N.A.Fiasco ∼ 1 1.11e-16 N.A. N.A.DellSPLOT ∼ 1 0.9462 ∼ 1 N.A.uClibc ∼ 1 ∼ 0 N.A. N.A.ToyBox ∼ 1 ∼ 0 N.A. N.A.BusyBox ∼ 1 ∼ 0 N.A. N.A.EmbToolkit ∼ 0 ∼ 0 N.A. N.A.LargeAutomotive N.A. N.A. N.A. N.A.

Table 3: Goodness-of-fit p-values for the configuration models.
Summary
Spur, Unigen2, and Smarch generate uniform random samples. However, QuickSampler infringes unifor-mity.

4.4 Threats to validity

4.4.1 Internal validity

Our experimental design discards two potential confounders for evaluating sampler scalability: sampling paral-
lelization and use of preprocessing techniques.Although any sampler can be run in amulti-core fashion, thus producing samples concurrently, only Unigen2is specifically tweaked for that. The focus of our evaluation is on the sampling techniques, not on how thosetechniques can be parallelized efficiently. Therefore, all samplers were run on a single thread.There are some methods to preprocess the model Boolean formulas for speeding up further computations.For example, Ivrri et al. [24] claim that sampling with the formulas’ Minimal Independent Support (MIS) pro-duces 2-3 orders of magnitude performance improvement. Nevertheless, Plazar et al. [47] empirical resultscontradict that, showing no running time difference between sampling from the whole formula or the MIS.Anyway, we decided to focus on the sampling techniques, not on how any additional preprocessing methodsmay impact those techniques.
4.4.2 Construct validity

Regarding sampler uniformity, our experimental results display inner and outer consistency to a great extent.Concerning inner consistency, as Figure 10 shows, the p-values that all samplers obtained for everymodel areremarkably similar. Spur, Unigen2, and Smarch got p-values∼ 1 in almost all models. In contrast, QuickSamplergot p-values∼ 0 in 85.71% of all models, but p-values∼ 1 in the remaining ones. We found that QuickSampler’s
p-values∼ 1 corresponded to the smallest models, with a median number of variables and clauses equal to 51.5and 144.5, respectivelly. That is, QuickSampler only exhibited uniformity for the most trivial models.

16

Pre-
prin

tRegarding outer consistency, Plazar et al. [47] reported an empirical evaluation of Unigen (the previousversion of Unigen2) and QuickSampler. Their results show that Unigenmeets uniformity but does not scale, andQuickSampler scales but does not provide any uniformity guarantee. Our results totally agree with Plazar et al.’sfindings.
4.4.3 External validity

Our study’s generalizability is supported by (i) the great variety and volume of the benchmark, and (ii) the lowvariance in the experimental results, i.e., the consistency of the execution times and p-values throughout everymodel in the benchmark.
5 Conclusions

The number of SAT solutions that configurationmodels encompass is typically so large thatmost analyses cannotbe performedneither examining every valid configuration, nor calling a SAT solvermassively. Statistical inferenceopens an alternative way to address these problems by working with a much more tractable sample that latersupports generalizing the results obtained to the population. However, the laws of statistical inference imposean indispensable requirement: samples must be collected at random, i.e., the configuration space needs to becovered uniformly.We have presented a goodness-of-fit test to verify sampler uniformity, which requires a reduced sample size,even for the largest models and the most strict reliability test arrangements. As a result, we have reported thefirst empirical sampler uniformity evaluation on large models. According to our evaluation, there is a samplernamed Spur, which generates uniform random samples and also scales for large configuration models. Hence,the power of statistical inference is ready to be unleashed for analyzing complex configurable software systems.
Material

Following open science’s good practices, our software artifacts are available publicly.
• The code scripts to (i) calculate each model’s sample size, (ii) run the samplers, and (iii) analyze the resultsare available at https://github.com/rheradio/sat_sampling
• The CNF and BDD encodings of the models, together with all generated samples and statistics are availableat https://doi.org/10.5281/zenodo.3757091
Acknowledgments

We would like to thank Don Batory and Jeho Oh from University of Texas at Austin (USA), and Jesús Giráldezfrom University of Granada (Spain) for their insightful comments in reviewing an stable version of this paper.This work has been partially funded by the SpanishMinistry of Science, Innovation and Universities (projectsVITAL-3D DPI2016-77677-P, and OPHELIA RTI2018-101204-B-C22); the Community of Madrid (research networkCAM RoboCity2030 S2013/MIT-2748); the TASOVA network (MCIU-AEI TIN2017-90644-REDT); and the Junta deAndalucia (METAMORFOSIS project).
17

https://github.com/rheradio/sat_sampling
https://doi.org/10.5281/zenodo.3757091

Pre-
prin

tReferences

[1] Dimitris Achlioptas, Zayd S. Hammoudeh, and Panos Theodoropoulos. Fast sampling of perfectly uniformsatisfying assignments. In 21st International Conference on Theory and Applications of Satisfiability Testing
(SAT), pages 135–147, Oxford, UK, 2018.

[2] Mauricio Alférez, Mathieu Acher, José Galindo, Benoit Baudry, and David Benavides. Modeling variabilityin the video domain: language and experience report. Software Quality Journal, 27(1):307–347, 2019.
[3] Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. FORCE: A Fast and Easy-to-Implement Variable-Ordering Heuristic. In ACM Great Lakes Symposium on VLSI (GLSVLSI), page 116–119, Washington, D. C.,USA, 2003.
[4] Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. MINCE: A Static Global Variable-Ordering Heuristic forSAT Search and BDD Manipulation. Journal of Universal Computer Science, 10(12):1562–1596, 2004.
[5] Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel. Sampling effect on perfor-mance prediction of configurable systems: A case study. In ACM/SPEC International Conference on Perfor-

mance Engineering (ICPE), page 277–288, Edmonton AB, Canada, 2020.
[6] Don S. Batory. Feature models, grammars, and propositional formulas. In 9th Software Product Line Con-

ference (SPLC), pages 7–20, Rennes, France, 2005.
[7] Mihir Bellare, Oded Goldreich, and Erez Petrank. Uniform Generation of NP-Witnesses Using an NP-Oracle.

Information and Computation, 163(2):510–526, 2000.
[8] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Handbook of Satisfiability: Volume 185

Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.
[9] Sourav Chakraborty and Kuldeep S. Meel. On testing of uniform samplers. In 33rd Conference on Artificial

Intelligence (AAAI), pages 7777–7784, Honolulu, Hawaii, USA, 1 2019.
[10] Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and Moshe Y. Vardi. On parallelscalable uniform SAT witness generation. In 21st International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS), pages 304–319, London, UK, 2015.
[11] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A Scalable and Nearly Uniform Generator ofSAT Witnesses. In 25th International Conference on Computer Aided Verification (CAV), pages 608–623,Saint Petersburg, Russia, 2013.
[12] Laura M. Chihara and Tim C. Hesterberg. Mathematical Statistics with Resampling and R. Peds-R-Us Med-ical Education, Llc, 2011.
[13] Jacon Cohen. Statistical Power Analysis for the Behavioral Sciences. Routledge, 1988.
[14] Ralph B. D’Agostino. Goodness-of-Fit-Techniques. CRC Press, 1986.

18

Pre-
prin

t[15] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pages 337–340, Budapest,Hungary, 2008.

[16] Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. Efficient Sampling of SAT Solutions forTesting. In 40th International Conference on Software Engineering (ICSE), pages 549–559, New York, NY,USA, 2018. ACM.
[17] David Fernandez-Amoros, Ruben Heradio, Jose A. Cerrada, and Carlos Cerrada. A Scalable Approach toExact Model and Commonality Counting for Extended Feature Models. IEEE Transactions on Software

Engineering, 40(9):895–910, 2014.
[18] David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander Egyed. A Kconfig trans-lation to logic with one-way validation system. In 23rd International Systems and Software Product Line

Conference (SPLC), page 303–308, Paris, France, 2019.
[19] Ivo Grosse, Pedro Bernaola-Galvan, Pedro Carpena, Ramon Roman-Roldan, Jose Oliver, and H. EugeneStanley. Analysis of symbolic sequences using the jensen-shannon divergence. Physical Review E,65(2):041905/1–0419051/16, 2002.
[20] Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha Sarkar, Pavel Valov, Krzysztof Czarnecki,AndrzejWasowski, and Huiqun Yu. Data-efficient performance learning for configurable systems. Empirical

Software Engineering, 23(3):1826–1867, 2018.
[21] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin, and Benoit Baudry. Testthem all, is it worth it? Assessing configuration sampling on the JHipsterWeb development stack. Empirical

Software Engineering, 24(2):674–717, 2019.
[22] Ruben Heradio, David Fernandez-Amoros, Christoph Mayr-Dorn, and Alexander Egyed. Supporting thestatistical analysis of variability models. In 41st International Conference on Software Engineering (ICSE),pages 843–853, Montréal, Canada, 2019.
[23] Michael Hübner and Jürgen Becker.Multiprocessor System-on-Chip: HardwareDesign and Tool Integration.Springer, 2011.
[24] Alexander Ivrii, Sharad Malik, Kuldeep S. Meel, and Moshe Y. Vardi. On computing minimal independentsupport and its applications to sampling and counting. Constraints, 21(1):41–58, 2016.
[25] Robert Kabacoff. R in Action: Data analysis and graphics with R. Manning Publications, 2011.
[26] C. Kaltenecker, A. Grebhahn, N. Siegmund, J. Guo, and S. Apel. Distance-based sampling of software con-figuration spaces. In 41st International Conference on Software Engineering (ICSE), pages 1084–1094, Mon-treal, Canada, 2019.
[27] Daniel Kaplan. Statistical Modeling: A Fresh Approach. Peds-R-Us Medical Education, Llc, 2012.
[28] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks & Techniques;

Binary Decision Diagrams. Addison-Wesley Professional, 2009.
19

Pre-
prin

t[29] Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, Alexander Grebhahn, and Sven Apel. Tradeoffs inmodeling performance of highly configurable software systems. Software& SystemsModeling, 18(3):2265–2283, 2019.
[30] Sebastian Krieter. Enabling Efficient Automated Configuration Generation and Management. In 23rd In-

ternational Systems and Software Product Line Conference (SPLC), pages 215–221, Paris, France, 2019.
[31] Sebastian Krieter, Thomas Thüm, Sandro Schulze, Gunter Saake, and Thomas Leich. Yasa: Yet anothersampling algorithm. In International Working Conference on Variability Modelling of Software-Intensive

System (VaMoS), Magdeburg, Germany, 2020. Association for Computing Machinery.
[32] Sebastian Krieter, Thomas Thüm, Sandro Schulze, Reimar Schröter, and Gunter Saake. Propagating configu-ration decisions with modal implication graphs. In 40th International Conference on Software Engineering

(ICSE), pages 898–909, Gothenburg, Sweden, May 2018.
[33] Daniel Lakens. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for

t-tests and ANOVAs. Frontiers in Psychology, 4(863):1–12, 2013.
[34] Jianhua Lin. Divergencemeasures based on the shannon entropy. IEEE Transactions on Information Theory,37(1):145–151, Jan 1991.
[35] Christoph Meinel and Thorsten Theobald. Algorithms and Data Structures in VLSI Design: OBDD - Founda-

tions And Applications, chapter Ch. 9: Optimizing the Variable Order, pages 145–170. Springer, 1998.
[36] Marcilio Mendonça. Efficient Reasoning Techniques for Large Scale Feature Models. PhD thesis, Universityof Waterloo, 2009.
[37] Daniel-Jesus Muñoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don Batory. Uniform Random SamplingProduct Configurations of Feature Models That Have Numerical Features. In 23rd International Systems

and Software Product Line Conference (SPLC), pages 289–301, Paris, France, 2019.
[38] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. Using Bad Learners to Find Good Configura-tions. In 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE), pages 257–267, Paderborn,Germany, 2017.
[39] Nina Narodytska and Toby Walsh. Constraint and variable ordering heuristics for compiling configurationproblems. In International Joint Conference on Artificial Intelligence (IJCAI), pages 149–154, Hyderabad,India, 2007.
[40] Yehuda Naveh, Michal Rimon, Itai Jaeger, Yoav Katz, Michael Vinov, Eitan Marcus, and Gil Shurek.Constraint-Based Random Stimuli Generation for Hardware Verification. In 18th Innovative Applications

of Artificial Intelligence Conference (IAAI), pages 1720–1727, Boston, Massachusetts, USA, 2006.
[41] Alexander Nöhrer and Alexander Egyed. C2O configurator: a tool for guided decision-making. Automated

Software Engineering, 20(2):265–296, Jun 2013.

20

Pre-
prin

t[42] Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. Finding Near-optimal Configurations inProduct Lines by Random Sampling. In 11th Joint Meeting on Foundations of Software Engineering (ES-
EC/FSE), pages 61–71, New York, NY, USA, 2017.

[43] JehoOh, Paul Gazzillo, andDonBatory. t-wise Coverage byUniform Sampling. In 23rd International Systems
and Software Product Line Conference (SPLC), pages 84–87, New York, NY, USA, 2019. ACM.

[44] Jeho Oh, Paul Gazzillo, and Don S. Batory. t-wise coverage by uniform sampling. In 23rd International
Systems and Software Product Line Conference (SPLC), pages 15:1–15:4, Paris, France, 2019.

[45] Hector Perez-Morago, Ruben Heradio, David Fernandez-Amoros, Roberto Bean, and Carlos Cerrada. Effi-cient Identification of Core and Dead Features in Variability Models. IEEE Access, 3:2333–2340, 2015.
[46] Tobias Pett, Thomas Thüm, Tobias Runge, Sebastian Krieter, Malte Lochau, and Ina Schaefer. Productsampling for product lines: The scalability challenge. In 23rd International Systems and Software Product

Line Conference (SPLC), page 78–83, Paris, France, 2019.
[47] Quentin Plazar, Mathieu Acher, Gilles Perrouin, Xavier Devroey, and Maxime Cordy. Uniform Sampling ofSAT Solutions for Configurable Systems: Are We There Yet? In 12th IEEE Conference on Software Testing,

Validation and Verification (ICST), pages 240–251, Xian, China, China, 2019.
[48] Subhajit Roy, Awanish Pandey, Brendan Dolan-Gavitt, and Yu Hu. Bug Synthesis: Challenging Bug-FindingTools with Deep Faults. In 26th ACM JointMeeting on European Software Engineering Conference and Sym-

posium on the Foundations of Software Engineering (ESEC/FSE), pages 224–234, Lake Buena Vista, Florida,USA, 2018.
[49] ShubhamSharma, Rahul Gupta, Subhajit Roy, and Kuldeep S.Meel. Knowledge Compilationmeets UniformSampling. In Gilles Barthe, Geoff Sutcliffe, and Margus Veanes, editors, 22nd International Conference

on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), pages 620–636, Awassa, Ethiopia,2018.
[50] Paul Temple, José A. Galindo, Mathieu Acher, and Jean-Marc Jézéquel. Using machine learning to inferconstraints for product lines. In 20th International Systems and Software Product Line Conference (SPLC),pages 209–218, Beijing, China, 2016.
[51] Marc Thurley. sharpSAT - Counting Models with Advanced Component Caching and Implicit BCP. In 9th

International Conference on Theory and Applications of Satisfiability Testing (SAT), pages 424–429, Seattle,WA, USA, 2006.
[52] Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thüm, Tobias Runge, Mohammad Reza Mousavi, and InaSchaefer. A classification of product sampling for software product lines. In International Systems and

Software Product Line Conference (SPLC), page 1–13, Gothenburg, Sweden, 2018. Association for ComputingMachinery.
[53] MarkusWeckesser, Roland Kluge,Martin Pfannemüller, MichaelMatthé, Andy Schürr, and Christian Becker.Optimal reconfiguration of dynamic software product lines based on performance-influence models. In

22nd International Systems and Software Product Line Conference (SPLC), pages 98–109, Gothenburg, Swe-den, 2018.
21

Pre-
prin

t[54] Jun Yuan, Ken Albin, Adnan Aziz, and Carl Pixley. Simplifying Constraint Solving in Random SimulationGeneration. In 11th IEEE/ACM International Workshop on Logic & Synthesis (IWLS), pages 185–190, NewOrleans, Louisiana, USA, 2002.

22

View publication statsView publication stats

https://www.researchgate.net/publication/344749967

	Introduction
	Uniform random sampling: state-of-the-art
	Uniform random samplers
	Atomic mutations
	Hashing-based sampling
	Counting-based sampling

	Methods for testing sample uniformity
	Method 1: Generate a massive sample with S, and compare it with another one obtained simulating an ideal uniform sampler
	Method 2: Assume the existence of a uniform sampler U, and compare the samples generated by both S and U
	Method 3: Compare the theoretical variable probabilities in with the empirical variable frequencies in a sample generated with S

	Assessing the uniformity of SAT solution samplers
	Goodness-of-fit testing
	Sample size

	Empirical evaluation of samplers' scalability and uniformity
	Research questions
	Experimental setup
	Results
	RQ1: Scalability and running time
	RQ2: Uniformity

	Threats to validity
	Internal validity
	Construct validity
	External validity

	Conclusions

