skip to main content
10.1145/3384382.3384521acmconferencesArticle/Chapter ViewAbstractPublication Pagesi3dConference Proceedingsconference-collections
research-article

Stochastic Substitute Trees for Real-Time Global Illumination

Published:05 May 2020Publication History

ABSTRACT

With the introduction of hardware-supported ray tracing and deep learning for denoising, computer graphics has made a considerable step toward real-time global illumination. In this work, we present an alternative global illumination method: The stochastic substitute tree (SST), a hierarchical structure inspired by lightcuts with light probability distributions as inner nodes. Our approach distributes virtual point lights (VPLs) in every frame and efficiently constructs the SST over those lights by clustering according to Morton codes. Global illumination is approximated by sampling the SST and considers the BRDF at the hit location as well as the SST nodes’ intensities for importance sampling directly from inner nodes of the tree. To remove the introduced Monte Carlo noise, we use a recurrent autoencoder. In combination with temporal filtering, we deliver real-time global illumination for complex scenes with challenging light distributions.

Skip Supplemental Material Section

Supplemental Material

sst_video.mp4

mp4

185.2 MB

References

  1. Timo Aila and Samuli Laine. 2009. Understanding the Efficiency of Ray Traversal on GPUs. In Proceedings of the Conference on High Performance Graphics 2009(HPG ’09). ACM, New York, NY, USA, 145–149. https://doi.org/10.1145/1572769.1572792Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Nir Benty, Kai-Hwa Yao, Lucy Chen, Tim Foley, Matthew Oakes, Conor Lavelle, and Chris Wyman. 2019. The Falcor Rendering Framework. https://github.com/NVIDIAGameWorks/Falcor https://github.com/NVIDIAGameWorks/Falcor.Google ScholarGoogle Scholar
  3. Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder. ACM Trans. Graph. 36, 4, Article 98 (July 2017), 12 pages. https://doi.org/10.1145/3072959.3073601Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. L. Cook and K. E. Torrance. 1982. A Reflectance Model for Computer Graphics. ACM Trans. Graph. 1, 1 (Jan. 1982), 7–24. https://doi.org/10.1145/357290.357293Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Carsten Dachsbacher, Jaroslav Křivánek, Miloš Hašan, Adam Arbree, Bruce Walter, and Jan Novák. 2014. Scalable Realistic Rendering with Many-Light Methods. Comput. Graph. Forum 33, 1 (Feb. 2014), 88–104. https://doi.org/10.1111/cgf.12256Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik P. A. Lensch. 2010. Edge-avoiding À-Trous Wavelet Transform for Fast Global Illumination Filtering. In Proceedings of the Conference on High Performance Graphics(HPG ’10). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 67–75. http://dl.acm.org/citation.cfm?id=1921479.1921491Google ScholarGoogle Scholar
  7. Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy, and Neil Hunt. 1988. The Triangle Processor and Normal Vector Shader: A VLSI System for High Performance Graphics. SIGGRAPH Comput. Graph. 22, 4 (June 1988), 21–30. https://doi.org/10.1145/378456.378468Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Eric Haines and Tomas Akenine-Moller. 2019. Ray Tracing Gems: High-Quality and Real-Time Rendering with DXR and Other APIs. Apress, Berkely, CA, USA.Google ScholarGoogle Scholar
  9. Miloš Hašan, Jaroslav Křivánek, Bruce Walter, and Kavita Bala. 2009. Virtual Spherical Lights for Many-Light Rendering of Glossy Scenes. In ACM SIGGRAPH Asia 2009 Papers(SIGGRAPH Asia ’09). Association for Computing Machinery, New York, NY, USA, Article Article 143, 6 pages. https://doi.org/10.1145/1661412.1618489Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Miloš Hašan, Fabio Pellacini, and Kavita Bala. 2007. Matrix Row-column Sampling for the Many-light Problem. ACM Trans. Graph. 26, 3, Article 26 (July 2007). https://doi.org/10.1145/1276377.1276410Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Yuchi Huo, Rui Wang, Shihao Jin, Xinguo Liu, and Hujun Bao. 2015. A Matrix Sampling-and-recovery Approach for Many-lights Rendering. ACM Trans. Graph. 34, 6, Article 210 (Oct. 2015), 12 pages. https://doi.org/10.1145/2816795.2818120Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Henrik Wann Jensen. 1996. Global Illumination Using Photon Maps. In Proceedings of the Eurographics Workshop on Rendering Techniques ’96. Springer-Verlag, London, UK, UK, 21–30. http://dl.acm.org/citation.cfm?id=275458.275461Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. James T. Kajiya. 1986. The Rendering Equation. SIGGRAPH Comput. Graph. 20, 4 (Aug. 1986), 143–150. https://doi.org/10.1145/15886.15902Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Tero Karras. 2012. Maximizing Parallelism in the Construction of BVHs, Octrees, and K-d Trees. In Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference on High-Performance Graphics(EGGH-HPG’12). Eurographics Association, Goslar Germany, Germany, 33–37. https://doi.org/10.2312/EGGH/HPG12/033-037Google ScholarGoogle ScholarCross RefCross Ref
  15. Alexander Keller. 1997. Instant Radiosity. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques(SIGGRAPH ’97). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 49–56. https://doi.org/10.1145/258734.258769Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Alexander Keller, Timo Viitanen, Colin Barré-Brisebois, Christoph Schied, and Morgan McGuire. 2019. Are We Done with Ray Tracing?. In ACM SIGGRAPH 2019 Courses(SIGGRAPH ’19). ACM, New York, NY, USA, Article 3, 381 pages. https://doi.org/10.1145/3305366.3329896Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. 2012. SURE-based Optimization for Adaptive Sampling and Reconstruction. ACM Trans. Graph. 31, 6, Article 194 (Nov. 2012), 9 pages. https://doi.org/10.1145/2366145.2366213Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Daqi Lin and Cem Yuksel. 2019. Real-Time Rendering with Lighting Grid Hierarchy. Proc. ACM Comput. Graph. Interact. Tech. (Proceedings of I3D 2019) 2, 1, Article 8 (2019), 17 pages. https://doi.org/10.1145/3321361Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Morgan McGuire. 2017. Computer Graphics Archive. https://casual-effects.com/data https://casual-effects.com/data.Google ScholarGoogle Scholar
  20. NVIDIA Corporation. 2018. NVIDIA Turing GPU Architecture. https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdfGoogle ScholarGoogle Scholar
  21. Jiawei Ou and Fabio Pellacini. 2011. LightSlice: Matrix Slice Sampling for the Many-lights Problem. ACM Trans. Graph. 30, 6, Article 179 (Dec. 2011), 8 pages. https://doi.org/10.1145/2070781.2024213Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Roman Prutkin, Anton Kaplanyan, and Carsten Dachsbacher. 2012. Reflective Shadow Map Clustering for Real-Time Global Illumination. (2012).Google ScholarGoogle Scholar
  23. Hauke Rehfeld and Carsten Dachsbacher. 2016. Lightcut Interpolation. In Proceedings of High Performance Graphics(HPG ’16). Eurographics Association, Goslar, DEU, 99–108.Google ScholarGoogle Scholar
  24. T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel, C. Dachsbacher, and J. Kautz. 2008. Imperfect Shadow Maps for Efficient Computation of Indirect Illumination. ACM Trans. Graph. 27, 5, Article 129 (Dec. 2008), 8 pages. https://doi.org/10.1145/1409060.1409082Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R. Alla Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, and Marco Salvi. 2017. Spatiotemporal Variance-guided Filtering: Real-time Reconstruction for Path-traced Global Illumination. In Proceedings of High Performance Graphics(HPG ’17). ACM, New York, NY, USA, Article 2, 12 pages. https://doi.org/10.1145/3105762.3105770Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Christoph Schied, Christoph Peters, and Carsten Dachsbacher. 2018. Gradient Estimation for Real-time Adaptive Temporal Filtering. Proc. ACM Comput. Graph. Interact. Tech. 1, 2, Article 24 (Aug. 2018), 16 pages. https://doi.org/10.1145/3233301Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. B. Segovia, J.C. Iehl, and B. Peroche. 2007. Metropolis Instant Radiosity. Computer Graphics Forum(2007). https://doi.org/10.1111/j.1467-8659.2007.01065.xGoogle ScholarGoogle Scholar
  28. Florian Simon, Johannes Hanika, and Carsten Dachsbacher. 2015. Rich-VPLs for Improving the Versatility of Many-Light Methods. Comput. Graph. Forum 34, 2 (May 2015), 575–584. https://doi.org/10.1111/cgf.12585Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Gabriel Taubin and Jarek Rossignac. 1998. Geometric Compression Through Topological Surgery. ACM Trans. Graph. 17, 2 (April 1998), 84–115. https://doi.org/10.1145/274363.274365Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Yusuke Tokuyoshi and Takahiro Harada. 2016. Stochastic Light Culling. Journal of Computer Graphics Techniques (JCGT) 5, 1 (March 2016), 35–60. http://jcgt.org/published/0005/01/02/Google ScholarGoogle Scholar
  31. Eric Veach and Leonidas J. Guibas. 1997. Metropolis Light Transport. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques(SIGGRAPH ’97). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 65–76. https://doi.org/10.1145/258734.258775Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Greenberg. 2006. Multidimensional Lightcuts. ACM Trans. Graph. 25, 3 (July 2006), 1081–1088. https://doi.org/10.1145/1141911.1141997Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and Donald P. Greenberg. 2005. Lightcuts: A Scalable Approach to Illumination. ACM Trans. Graph. 24, 3 (July 2005), 1098–1107. https://doi.org/10.1145/1073204.1073318Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Cem Yuksel. 2019. Stochastic Lightcuts. In High-Performance Graphics (HPG 2019). The Eurographics Association. https://doi.org/10.2312/hpg.20191192Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    I3D '20: Symposium on Interactive 3D Graphics and Games
    May 2020
    156 pages
    ISBN:9781450375894
    DOI:10.1145/3384382

    Copyright © 2020 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 5 May 2020

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate148of485submissions,31%

    Upcoming Conference

    I3D '24
    Symposium on Interactive 3D Graphics and Games
    May 8 - 10, 2024
    Philadelphia , PA , USA

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format