skip to main content
10.1145/3384382.3384528acmconferencesArticle/Chapter ViewAbstractPublication Pagesi3dConference Proceedingsconference-collections
research-article

Interactive Inverse Spatio-Temporal Crowd Motion Design

Published:05 May 2020Publication History

ABSTRACT

We introduce a new inverse modeling method to interactively design crowd animations. Few works focus on providing succinct high-level and large-scale crowd motion modeling. Our methodology is to read in real or virtual agent trajectory data and automatically infer a set of parameterized crowd motion models. Then, components of the motion models can be mixed, matched, and altered enabling rapidly producing new crowd motions. Our results show novel animations using real-world data, using synthetic data, and imitating real-world scenarios. Moreover, by combining our method with our interactive crowd trajectory sketching tool, we can create complex spatio-temporal crowd animations in about a minute.

References

  1. Kfir Aberman, Rundi Wu, Dani Lischinski, Baoquan Chen, and Daniel Cohen-Or. 2019. Learning Character-agnostic Motion for Motion Retargeting in 2D. ACM Trans. Graph. 38, 4, Article 75 (2019), 75:1–75:14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Richard Bellman. 2013. Dynamic programming. Courier Corporation.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Aniket Bera, Sujeong Kim, and Dinesh Manocha. 2015. Efficient Trajectory Extraction and Parameter Learning for Data-driven Crowd Simulation. In Proc. of the 41st Graphics Interface Conference(GI ’15). 65–72.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Martin Bokeloh, Michael Wand, and Hans-Peter Seidel. 2010. A connection between partial symmetry and inverse procedural modeling. In ACM Trans. Graph, Vol. 29. ACM, 104.Google ScholarGoogle Scholar
  5. Alessandro de Lima Bicho, Rafael Araújo Rodrigues, Soraia Raupp Musse, Cláudio Rosito Jung, Marcelo Paravisi, and Léo Pini Magalhães. 2012. Simulating crowds based on a space colonization algorithm. Comp. & Graph. 36, 2 (2012), 70–79.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ilke Demir, Daniel G Aliaga, and Bedrich Benes. 2016. Proceduralization for editing 3d architectural models. In 3D Vision (3DV). IEEE, 194–202.Google ScholarGoogle Scholar
  7. T. B. Dutra, R. Marques, J.B. Cavalcante-Neto, C. A. Vidal, and J. Pettré. 2017. Gradient-based Steering for Vision-based Crowd Simulation Algorithms. Comput. Graph. Forum 36, 2 (May 2017), 337–348. http://dl.acm.org/citation.cfm?id=3128975.3129006Google ScholarGoogle Scholar
  8. Arnaud Emilien, Ulysse Vimont, Marie-Paule Cani, Pierre Poulin, and Bedrich Benes. 2015. WorldBrush: Interactive Example-based Synthesis of Procedural Virtual Worlds. ACM Trans. Graph. 34, 4, Article 106 (July 2015), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, 1996. A density-based algorithm for discovering clusters in large spatial databases with noise.. In Kdd, Vol. 96. 226–231.Google ScholarGoogle Scholar
  10. Ignacio Garcia-Dorado, Daniel G. Aliaga, and Satish V. Ukkusuri. 2014. Designing large-scale interactive traffic animations for urban modeling. Comp. Graph. Forum 33, 2 (2014), 411–420.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Abhinav Golas, Rahul Narain, and Ming Lin. 2013. Hybrid Long-range Collision Avoidance for Crowd Simulation. In Proc. of I3D(I3D ’13). ACM, 29–36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kevin Jordao, Panayiotis Charalambous, Marc Christie, Julien Pettré, and Marie-Paule Cani. 2015. Crowd art: density and flow based crowd motion design. In MIG.Google ScholarGoogle Scholar
  13. Kevin Jordao, Julien Pettré, Marc Christie, and Marie-Paule Cani. 2014. Crowd sculpting: A space-time sculpting method for populating virtual environments. Comput. Graph. Forum 33(2014), 351–360.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Eunjung Ju, Myung Geol Choi, Minji Park, Jehee Lee, Kang Hoon Lee, and Shigeo Takahashi. 2010. Morphable Crowds. In ACM SIGGRAPH Asia. ACM, Article 140, 10 pages. https://doi.org/10.1145/1866158.1866162Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Alain Juarez-Perez and Marcelo Kallmann. 2018. Fast Behavioral Locomotion with Layered Navigation Meshes. In Proc. of I3D(I3D ’18). ACM, Article 8, 6 pages. https://doi.org/10.1145/3190834.3190841Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mubbasir Kapadia, Shawn Singh, Brian Allen, Glenn Reinman, and Petros Faloutsos. 2009. SteerBug: An Interactive Framework for Specifying and Detecting Steering Behaviors. In Proc. of SCA(SCA ’09). ACM, 209–216.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Mubbasir Kapadia, Xu Xianghao, Maurizio Nitti, Marcelo Kallmann, Stelian Coros, Robert W. Sumner, and Markus Gross. 2016. Precision: Precomputing Environment Semantics for Contact-rich Character Animation. In Proc. of I3D(I3D ’16). 29–37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ioannis Karamouzas, Brian Skinner, and Stephen J Guy. 2014. Universal power law governing pedestrian interactions. Physical Rev. letters 113, 23 (2014), 238701.Google ScholarGoogle Scholar
  19. Ioannis Karamouzas, Nick Sohre, Ran Hu, and Stephen J. Guy. 2018. Crowd Space: A Predictive Crowd Analysis Technique. ACM Trans. Graph. 37, 6, Article 186 (Dec. 2018), 14 pages. https://doi.org/10.1145/3272127.3275079Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ioannis Karamouzas, Nick Sohre, Rahul Narain, and Stephen J. Guy. 2017. Implicit Crowds: Optimization Integrator for Robust Crowd Simulation. ACM Trans. Graph. 36, 4, Article 136 (2017), 13 pages. https://doi.org/10.1145/3072959.3073705Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jongmin Kim, Yeongho Seol, Taesoo Kwon, and Jehee Lee. 2014. Interactive Manipulation of Large-scale Crowd Animation. ACM Trans. Graph. 33, 4, Article 83 (July 2014), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Sujeong Kim, Stephen J. Guy, Dinesh Manocha, and Ming C. Lin. 2012. Interactive Simulation of Dynamic Crowd Behaviors Using General Adaptation Syndrome Theory. In Proc. of I3D(I3D ’12). ACM, 55–62.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Eugene L Lawler. 1972. A procedure for computing the k best solutions to discrete optimization problems and its application to the shortest path problem. Management science 18, 7 (1972), 401–405.Google ScholarGoogle Scholar
  24. Kang Hoon Lee, Myung Choi, Qyoun Hong, and J. Lee. 2007. Group behavior from video: A data-driven approach to crowd simulation. Proc. of SCA 2007, 109–118. https://doi.org/10.1145/1272690.1272706Google ScholarGoogle Scholar
  25. Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. 2007. Crowds by Example. Comput. Graph. Forum 26(2007), 655–664.Google ScholarGoogle ScholarCross RefCross Ref
  26. Yi Li, Marc Christie, Orianne Siret, Richard Kulpa, and Julien Pettré. 2012. Cloning Crowd Motions. In Proc. of SCA(SCA ’12). Eurographics Association, 201–210.Google ScholarGoogle Scholar
  27. Rahul Narain, Abhinav Golas, Sean Curtis, and Ming C. Lin. 2009. Aggregate Dynamics for Dense Crowd Simulation. ACM Trans. Graph. 28, 5, Article 122 (2009), 122:1–122:8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Gen Nishida, Adrien Bousseau, and Daniel G Aliaga. 2018. Procedural Modeling of a Building from a Single Image. In Comp. Graph. Forum, Vol. 37. 415–429.Google ScholarGoogle Scholar
  29. Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Adrien Bousseau. 2016. Interactive Sketching of Urban Procedural Models. ACM Trans. Graph. 35, 4, Article 130 (July 2016), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Aline Normoyle, Maxim Likhachev, and Alla Safonova. 2014. Stochastic Activity Authoring with Direct User Control. In Proc. of I3D(I3D ’14). ACM, 31–38.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Chonhyon Park, Jae Sung Park, Steve Tonneau, Nicolas Mansard, Franck Multon, Julien Pettré, and Dinesh Manocha. 2016. Dynamically Balanced and Plausible Trajectory Planning for Human-like Characters. In Proc. of I3D(I3D ’16). 39–48.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sachin Patil, Jur van den Berg, Sean Curtis, Ming C. Lin, and Dinesh Manocha. 2011. Directing Crowd Simulations Using Navigation Fields. IEEE Transactions on Visualization and Computer Graphics 17, 2 (Feb. 2011), 244–254.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Mikel Rodriguez, Ivan Laptev, Josef Sivic, and Jean-Yves Audibert. 2011. Density-aware person detection and tracking in crowds. 2011 International Conference on Computer Vision (2011), 2423–2430.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Arno Schödl, Richard Szeliski, David H. Salesin, and Irfan Essa. 2000. Video Textures. In Proc. of Siggraph. 489–498.Google ScholarGoogle Scholar
  35. Boltes Maik Seyfried, Armin. 2019. Pedestrian Dynamics Data Archive. website: http://ped.fz-juelich.de/da/doku.php?id=start; accessed January 10, 2019.Google ScholarGoogle Scholar
  36. Alexander Shoulson, Nathan Marshak, Mubbasir Kapadia, and Norman I. Badler. 2013. ADAPT: The Agent Development and Prototyping Testbed. In Proc. of I3D(I3D ’13). 9–18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Shawn Singh, Mubbasir Kapadia, Billy Hewlett, Glenn Reinman, and Petros Faloutsos. 2011. A Modular Framework for Adaptive Agent-based Steering. In I3D(I3D ’11). ACM, 141–150 PAGE@9.Google ScholarGoogle Scholar
  38. Ondrej Stava, B. Benes, Radomír Měch, D. G. Aliaga, and P. Kristof. 2010. Inverse procedural modeling by automatic generation of L-systems. 29, 2 (2010), 665–674.Google ScholarGoogle Scholar
  39. Ondrej Stava, Sören Pirk, Julian Kratt, Baoquan Chen, Radomir Mech, Oliver Deussen, and Bedrich Benes. 2014a. Inverse Procedural Modelling of Trees. Comp. Graph. Forum 33, 6 (2014), 118–131.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Ondrej. Stava, Sören. Pirk, Julain Kratt, Baoquan Chen, Radomir Měch, Oliver Deussen, and Benes Benes. 2014b. Inverse Procedural Modelling of Trees. Comp. Graph. Forum 33, 6 (2014), 118–131. https://doi.org/10.1111/cgf.12282 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12282Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Mankyu Sung, Michael Gleicher, and Stephen Chenney. 2004. Scalable behaviors for crowd simulation. Comp. Graph. Forum (2004).Google ScholarGoogle Scholar
  42. Shigeo Takahashi, Kenichi Yoshida, Taesoo Kwon, Kang Hoon Lee, Jehee Lee, and Sung Yong Shin. 2009. Spectral-Based Group Formation Control. Comput. Graph. Forum 28(2009), 639–648.Google ScholarGoogle ScholarCross RefCross Ref
  43. Jerry Talton, Lingfeng Yang, Ranjitha Kumar, Maxine Lim, Noah Goodman, and Radomír Měch. 2012. Learning design patterns with bayesian grammar induction. In UIST. ACM, 63–74.Google ScholarGoogle Scholar
  44. Jerry O Talton, Yu Lou, Steve Lesser, Jared Duke, Radomír Měch, and Vladlen Koltun. 2011. Metropolis proced. modeling. ACM Trans. Graph. 30, 2 (2011), 11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Adrien Treuille, Seth Cooper, and Zoran Popović. 2006. Continuum crowds. ACM Trans. Graph. 25, 3 (2006), 1160–1168.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Branislav Ulicny, Pablo de Heras Ciechomski, and Daniel Thalmann. 2004. Crowdbrush: Interactive Authoring of Real-time Crowd Scenes. In Proc. of SCA(SCA ’04). Eurographics Association, 243–252.Google ScholarGoogle Scholar
  47. Jur van den Berg, Stephen J. Guy, Ming Lin, and Dinesh Manocha. 2011. Reciprocal n-Body Collision Avoidance. In Robotics Research, Cédric Pradalier, Roland Siegwart, and Gerhard Hirzinger(Eds.). Springer Berlin Heidelberg, 3–19.Google ScholarGoogle Scholar
  48. Carlos A. Vanegas, Daniel G. Aliaga, and Bedrich Benes. 2010. Building reconstruction using manhattan-world grammars. Computer Vision and Pattern Recognition, IEEE Computer Society Conference on 0 (2010), 358–365.Google ScholarGoogle Scholar
  49. Carlos A. Vanegas, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Paul Waddell. 2012. Inverse Design of Urban Procedural Models. ACM Trans. Graph. 31, 6, Article 168 (Nov. 2012), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. He Wang and Carol O Sullivan. 2016. Globally Continuous and Non-Markovian Crowd Activity Analysis from Videos. In Computer Vision – ECCV 2016, Vol. 9909.Google ScholarGoogle ScholarCross RefCross Ref
  51. He Wang, Jan Ondřej, and Carol O Sullivan. 2016. Path Patterns: Analyzing and Comparing Real and Simulated Crowds. In Proc. of I3D(I3D ’16). ACM, 49–57.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. D. Wolinski, S. J. Guy, A.-H. Olivier, M. Lin, D. Manocha, and J. Pettré. 2014. Parameter Estimation and Comparative Evaluation of Crowd Simulations. Comput. Graph. Forum 33, 2 (May 2014), 303–312.Google ScholarGoogle Scholar
  53. David Wolinski, Ming C. Lin, and Julien Pettré. 2016. WarpDriver: Context-aware Probabilistic Motion Prediction for Crowd Simulation. ACM Trans. Graph. 35, 6, Article 164 (Nov. 2016), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Sai-Keung Wong, Yi-Hung Chou, and Hsiang-Yu Yang. 2018. A Framework for Simulating Agent-based Cooperative Tasks in Crowd Simulation. In Proc. of I3D(I3D ’18). ACM, Article 11, 10 pages. https://doi.org/10.1145/3190834.3190839Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Barbara Yersin, Jonathan Maïm, Julien Pettré, and Daniel Thalmann. 2009. Crowd Patches: Populating Large-scale Virtual Environments for Real-time Applications. In Proc. of I3D(I3D ’09). ACM, 207–214.Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    I3D '20: Symposium on Interactive 3D Graphics and Games
    May 2020
    156 pages
    ISBN:9781450375894
    DOI:10.1145/3384382

    Copyright © 2020 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 5 May 2020

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate148of485submissions,31%

    Upcoming Conference

    I3D '24
    Symposium on Interactive 3D Graphics and Games
    May 8 - 10, 2024
    Philadelphia , PA , USA

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format