skip to main content
10.1145/3386164.3387295acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiscsicConference Proceedingsconference-collections
research-article

A General Architecture for a Real-Time Monitoring System Based on the Internet of Things

Authors Info & Claims
Published:06 June 2020Publication History

ABSTRACT

Recently there has been significant progress in the real-time monitoring system based on the Internet of Things (IoT). The use rate of IoT has been increasing exponentially because of its enormous application in different areas, with many of them are yet to be explored. This paper explains how to design an IoT system and describes its working mechanism. We present a general architecture of the real-time monitoring system using IoT and related services. We successfully implement our proposed architecture for a single domain. Then, we describe how to use the proposed architecture to monitor the different real-time contextual domains. Also, we present ideas on how to plug the data from a third-party application into the proposed architecture.

References

  1. A. Amiri. Application placement and backup service in computer clustering in software as a service (saas) networks. Computers & Operations Research, 69:48--55, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. J. Ferrer, D. G. Pérez, and R. S. González. Multi-cloud platform-as-a-service model, functionalities and approaches. Procedia Computer Science, 97:63--72, 2016. 2nd International Conference on Cloud Forward: From Distributed to Complete Computing.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. P. Plageras, K. E. Psannis, Y. Ishibashi, and B.-G. Kim. Iot-based surveillance system for ubiquitous healthcare. In IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, pages 6226--6230, Oct 2016.Google ScholarGoogle ScholarCross RefCross Ref
  4. Anurag, S. R. Moosavi, A. M. Rahmani, T. Westerlund, G. Yang, P. Liljeberg, and H. Tenhunen. Pervasive health monitoring based on internet of things: Two case studies. In 2014 4th International Conference on Wireless Mobile Communication and Healthcare - Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), pages 275--278, Nov 2014.Google ScholarGoogle Scholar
  5. C. Y. J. Peng, K. L. Lee, and G. M. Ingersoll. An introduction to logistic regression analysis and reporting. The Journal of Educational Research, 96(1):3--14, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  6. D. Zhang, L. T. Yang, M. Chen, S. Zhao, M. Guo, and Y. Zhang. Real-time locating systems using active rfid for internet of things. IEEE Systems Journal, 10(3):1226--1235, Sep. 2016.Google ScholarGoogle ScholarCross RefCross Ref
  7. E. Patti, A. Acquaviva, M. Jahn, F. Pramudianto, R. Tomasi, D. Rabourdin, J. Virgone, and E. Macii. Event-driven user-centric middleware for energy-efficient buildings and public spaces. IEEE Systems Journal, 10(3):1137--1146, Sep. 2016.Google ScholarGoogle ScholarCross RefCross Ref
  8. Eclipse Foundation. Eclipse paho. https://www.eclipse.org/paho/. MQTT Client Library.Google ScholarGoogle Scholar
  9. F. Paganelli, S. Turchi, and D. Giuli. A web of things framework for restful applications and its experimentation in a smart city. IEEE Systems Journal, 10(4):1412--1423, Dec 2016.Google ScholarGoogle ScholarCross RefCross Ref
  10. F. Tao, L. Zhang, V. C. Venkatesh, Y. Luo, and Y. Cheng. Cloud manufacturing: a computing and service-oriented manufacturing model. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(10):1969--1976, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  11. F. Tao, Y. Cheng, L. D. Xu, L. Zhang, and B. H. Li. Cciotcmfg: Cloud computing and internet of things-based cloud manufacturing service system. IEEE Transactions on Industrial Informatics, 10(2):1435--1442, May 2014.Google ScholarGoogle ScholarCross RefCross Ref
  12. F. Tao, Y. Zuo, L. D. Xu, and L. Zhang. Iot-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Transactions on Industrial Informatics, 10(2):1547--1557, May 2014.Google ScholarGoogle ScholarCross RefCross Ref
  13. F. Tao, Y. Zuo, L. D. Xu, L. Lv, and L. Zhang. Internet of things and bom-based life cycle assessment of energy-saving and emission-reduction of products. IEEE Transactions on Industrial Informatics, 10(2):1252--1261, May 2014.Google ScholarGoogle ScholarCross RefCross Ref
  14. G. Xiong, F.-Y. Wang, T. R. Nyberg, X. Shang, M. Zhou, Z. Shen, S. Li, and C. Guo. From mind to products: towards social manufacturing and service. IEEE/CAA Journal of Automatica Sinica, 5(1):47--57, Jan 2018.Google ScholarGoogle ScholarCross RefCross Ref
  15. H. C. Hwang, J. Park, and J. G. Shon. Design and implementation of a reliable message transmission system based on MQTT protocol in IoT. Wireless Personal Communications, 91(4):1765--1777, Dec 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. H. Lee, J. W. Kang, J. Lee, J. S. Choi, J. Kim, and D. Sim. Scalable extension of hevc for flexible high-quality digital video content services. ETRI Journal, 35(6):990--1000, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  17. IBM Developer. Scan your app to find and fix OWASP Top 10--2017 vulnerabilities. https://developer.ibm.com/tutorials/se-owasp-top10/. Secure web, mobile, and cloud applications.Google ScholarGoogle Scholar
  18. J. C. Bezdek, S. K. Chuah, and D. Leep. Generalized k-nearest neighbor rules. Fuzzy Sets and Systems, 18(3):237--256, 1986. Dedicated to the memory of Richard E. Bellman.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Pan, R. Jain, S. Paul, T. Vu, A. Saifullah, and M. Sha. An internet of things framework for smart energy in buildings: Designs, prototype, and experiments. IEEE Internet of Things Journal, 2(6):527--537, Dec 2015.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. Ravichandran and A. I. Arulappan. Data validation algorithm for wireless sensor networks. International Journal of Distributed Sensor Networks, 9(12):634278, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  21. K. Chard, K. Bubendorfer, S. Caton, and O. F. Rana. Social cloud computing: A vision for socially motivated resource sharing. IEEE Transactions on Services Computing, 5(4):551--563, Fourth 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. K. Wang, J. Alonso-Zarate, and M. Dohler. Energy-efficiency of LTE for small data machine-to-machine communications. In 2013 IEEE International Conference on Communications (ICC), pages 4120--4124, June 2013.Google ScholarGoogle ScholarCross RefCross Ref
  23. K. Zheng, S. Ou, J. Alonso-Zarate, M. Dohler, F. Liu, and H. Zhu. Challenges of massive access in highly dense LTE-advanced networks with machine-to-machine communications. IEEE Wireless Communications, 21(3):12--18, June 2014.Google ScholarGoogle ScholarCross RefCross Ref
  24. L. D. Xu, W. He, and S. Li. Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4):2233--2243, Nov 2014.Google ScholarGoogle ScholarCross RefCross Ref
  25. L. Liu, W. Han, T. Zhou, and X. Zhang. Scout: Prying into supply chains via a public query interface. IEEE Systems Journal, 10(1):179--188, March 2016.Google ScholarGoogle ScholarCross RefCross Ref
  26. L. Sun, H. Tian, and L. Xu. A joint energy-saving mechanism for M2M communications in LTE-based system. In 2013 IEEE Wireless Communications and Networking Conference (WCNC), pages 4706--4711, April 2013.Google ScholarGoogle Scholar
  27. M. Hasan, E. Hossain, and D. Niyato. Random access for machine-to-machine communication in LTE-advanced networks: issues and approaches. IEEE Communications Magazine, 51(6):86--93, June 2013.Google ScholarGoogle ScholarCross RefCross Ref
  28. M. Serrano, H. N. M. Quoc, D. Le Phuoc, M. Hauswirth, J. Soldatos, N. Kefalakis, P. P. Jayaraman, and A. Zaslavsky. Defining the stack for service delivery models and interoperability in the internet of things: A practical case with openiot-vdk. IEEE Journal on Selected Areas in Communications, 33(4):676--689, April 2015.Google ScholarGoogle ScholarCross RefCross Ref
  29. mqtt-v3.1.1-plus errata01. MQTT version 3.1.1. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html, October 2014. OASIS Standard.Google ScholarGoogle Scholar
  30. P. Gope and T. Hwang. Bsn-care: A secure iot-based modern healthcare system using body sensor network. IEEE Sensors Journal, 16(5):1368--1376, March 2016.Google ScholarGoogle ScholarCross RefCross Ref
  31. P. K. Choubey, S. Pateria, A. Saxena, V. P. Chirayil SB, K. K. Jha, and S. Basaiah PM. Power efficient, bandwidth optimized and fault tolerant sensor management for iot in smart home. In 2015 IEEE International Advance Computing Conference (IACC), pages 366--370, June 2015.Google ScholarGoogle ScholarCross RefCross Ref
  32. P. P. Jayaraman, A. Yavari, D. Georgakopoulos, A. Morshed, and A. Zaslavsky. Internet of things platform for smart farming: Experiences and lessons learnt. Sensors, 16(11), 2016.Google ScholarGoogle Scholar
  33. Paolo Patierno. M2mqtt. https://m2mqtt.wordpress.com/download/. MQTT Client Library for Dot Net Platform.Google ScholarGoogle Scholar
  34. S. B. Kotsiantis. Decision trees: a recent overview. Artificial Intelligence Review, 39(4):261--283, Apr 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. S. Fang, L. D. Xu, Y. Zhu, J. Ahati, H. Pei, J. Yan, and Z. Liu. An integrated system for regional environmental monitoring and management based on internet of things. IEEE Transactions on Industrial Informatics, 10(2):1596--1605, May 2014.Google ScholarGoogle ScholarCross RefCross Ref
  36. S. Hawkins, H. He, G. Williams, and R. Baxter. Outlier detection using replicator neural networks. In Y. Kambayashi, W. Winiwarter, and M. Arikawa, editors, Data Warehousing and Knowledge Discovery, pages 170--180, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.Google ScholarGoogle ScholarCross RefCross Ref
  37. S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant analysis with kernels, 1999.Google ScholarGoogle Scholar
  38. S. Mumtaz, A. Alsohaily, Z. Pang, A. Rayes, K. F. Tsang, and J. Rodriguez. Massive internet of things for industrial applications: Addressing wireless IIoT connectivity challenges and ecosystem fragmentation. IEEE Industrial Electronics Magazine, 11(1):28--33, March 2017.Google ScholarGoogle ScholarCross RefCross Ref
  39. S. S. Manvi and G. K. Shyam. Resource management for infrastructure as a service (iaas) in cloud computing: A survey. Journal of Network and Computer Applications, 41:424--440, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  40. S. Sendra, J. Lloret, M. García Pineda, and J. F. Toledo Alarcón. Power saving and energy optimization techniques for wireless sensor neworks (Invited Paper). JCM, 6:439--459, 09 2011.Google ScholarGoogle ScholarCross RefCross Ref
  41. T. N. Gia, A. Rahmani, T. Westerlund, P. Liljeberg, and H. Tenhunen. Fault tolerant and scalable iot-based architecture for health monitoring. In 2015 IEEE Sensors Applications Symposium (SAS), pages 1--6, April 2015.Google ScholarGoogle ScholarCross RefCross Ref
  42. T. Wu, F. Wu, J.-M. Redouté, and M. R. Yuce. An autonomous wireless body area network implementation towards iot connected healthcare applications. IEEE Access, 5:11413--11422, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  43. V. Gungor, E. Natalizio, P. Pace, and S. Avallone. Challenges and Issues in Designing Architectures and Protocols for Wireless Mesh Networks, pages 1--27. Springer US, Boston, MA, 2008.Google ScholarGoogle Scholar
  44. W. He, G. Yan, and L. D. Xu. Developing vehicular data cloud services in the iot environment. IEEE Transactions on Industrial Informatics, 10(2):1587--1595, May 2014.Google ScholarGoogle ScholarCross RefCross Ref
  45. W. R. Kriesel, O. W. Madelung, and K. Bender. ASI: The Actuator-sensor-interface for Automation. Hanser, 1995.Google ScholarGoogle Scholar
  46. Y. Huang and L. Li. Naive bayes classification algorithm based on small sample set. In 2011 IEEE International Conference on Cloud Computing and Intelligence Systems, pages 34--39, Sep. 2011.Google ScholarGoogle ScholarCross RefCross Ref
  47. Y. Liang, X. Zhou, D. D. Zeng, B. Guo, X. Zheng, and Z. Yu. An integrated approach of sensing tobacco-oriented activities in online participatory media. IEEE Systems Journal, 10(3):1193--1202, Sep. 2016.Google ScholarGoogle ScholarCross RefCross Ref
  48. Y. Ye, Y. He, Y.-K. Wang, and H.. SHVC, the Scalable Extensions of HEVC, and Its Applications, volume 01. ZTE COMMUNICATIONS, 2016.Google ScholarGoogle Scholar
  49. Z. Bi, L. D. Xu, and C. Wang. Internet of things for enterprise systems of modern manufacturing. IEEE Transactions on Industrial Informatics, 10(2):1537--1546, May 2014.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A General Architecture for a Real-Time Monitoring System Based on the Internet of Things

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          ISCSIC 2019: Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control
          September 2019
          397 pages
          ISBN:9781450376617
          DOI:10.1145/3386164

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 6 June 2020

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          ISCSIC 2019 Paper Acceptance Rate77of152submissions,51%Overall Acceptance Rate192of401submissions,48%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader