skip to main content
10.1145/3386367.3431294acmconferencesArticle/Chapter ViewAbstractPublication PagesconextConference Proceedingsconference-collections
short-paper
Public Access

Drop the packets: using coarse-grained data to detect video performance issues

Published:24 November 2020Publication History

ABSTRACT

Understanding end-user video Quality of Experience (QoE) is important for Internet Service Providers (ISPs). Existing work presents mechanisms that use network measurement data to estimate video QoE. Most of these mechanisms assume access to packet-level traces, the most-detailed data available from the network. However, collecting packet-level traces can be challenging at a network-wide scale. Therefore, we ask:"Is it feasible to estimate video QoE with lightweight, readily-available, but coarse-grained network data?" We specifically consider data in the form of Transport Layer Security (TLS) transactions that can be collected using a standard proxy and present a machine learning-based methodology to estimate QoE. Our evaluation with three popular streaming services shows that the estimation accuracy using TLS transactions is high (up to 72%) with up to 85% recall in detecting low QoE (low video quality or high re-buffering) instances. Compared to packet traces, the estimation accuracy (recall) is 7% (9%) lower but has up to 60 times lower computation overhead.

References

  1. 2020. Cisco study. (2020). https://goo.gl/uz3SCNGoogle ScholarGoogle Scholar
  2. 2020. FCC dataset. (2020). https://www.fcc.gov/measuring-broadband-americaGoogle ScholarGoogle Scholar
  3. 2020. Multi-Service Proxy. (2020). https://docuri.com/download/msp_59c1d020f581710b28642614_pdfGoogle ScholarGoogle Scholar
  4. 2020. Squid: Optimising Web Delivery. (2020). http://www.squid-cache.org/Google ScholarGoogle Scholar
  5. S. Akhshabi, A. C. Begen, and C. Dovrolis. 2011. An experimental evaluation of rate-adaptation algorithms in adaptive streaming over HTTP. In Proc. ACM MMSys.Google ScholarGoogle Scholar
  6. Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica, and Hui Zhang. 2013. Developing a Predictive Model of Quality of Experience for Internet Video. In Proc. of ACM SIGCOMM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ignacio N Bermudez, Marco Mellia, Maurizio M Munafo, Ram Keralapura, and Antonio Nucci. 2012. DNS to the rescue: discerning content and services in a tangled web. In Proc. of ACM IMC.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Guilherme Martins, Renata Teixeira, and Nick Feamster. 2019. Inferring Streaming Video Quality from Encrypted Traffic: Practical Models and Deployment Experience. Proc. of ACM SIGMETRICS (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. B. Claise. 2004. Cisco Systems NetFlow Services Export Version 9. IETF RFC 5246. (October 2004).Google ScholarGoogle Scholar
  10. Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk. 2003. Gigascope: a stream database for network applications. In Proc. of ACM SIGMOD.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. G. Dimopoulos, P. Barlet-Ros, and J. Sanjuàs-Cuxart. 2013. Analysis of YouTube user experience from passive measurements. In Proc. of CNSM.Google ScholarGoogle Scholar
  12. Giorgos Dimopoulos, Ilias Leontiadis, Pere Barlet-Ros, and Konstantina Papagiannaki. 2016. Measuring Video QoE from Encrypted Traffic. In Proc. of ACM IMC.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and Walter Willinger. 2018. Sonata: Query-driven streaming network telemetry. In Proc. of ACM SIGCOMM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Craig Gutterman, Katherine Guo, Sarthak Arora, Xiaoyang Wang, Les Wu, Ethan Katz-Bassett, and Gil Zussman. 2019. Requet: Real-time QoE detection for encrypted youtube traffic. In Proc. of ACM MMSys.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark Watson. 2014. A Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service. In Proc. of ACM SIGCOMM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive Video Streaming with FESTIVE. In Proc. of ACM CoNEXT.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Vengatanathan Krishnamoorthi, Niklas Carlsson, Emir Halepovic, and Eric Petajan. 2017. BUFFEST: Predicting Buffer Conditions and Real-time Requirements of HTTP(S) Adaptive Streaming Clients. In Proc. of ACM MMSys.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Shunmuga Krishnan and Ramesh K. Sitaraman. 2012. Video Stream Quality Impacts Viewer Behavior: Inferring Causality Using Quasi-experimental Designs. In Proc. of ACM IMC.Google ScholarGoogle Scholar
  19. Fangfan Li, Arian Akhavan Niaki, David Choffnes, Phillipa Gill, and Alan Mislove. 2019. A large-scale analysis of deployed traffic differentiation practices. In Proc. of ACM SIGCOMM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Y. Liu, S. Dey, F. Ulupinar, M. Luby, and Y. Mao. 2015. Deriving and Validating User Experience Model for DASH Video Streaming. IEEE Transactions on Broadcasting (2015).Google ScholarGoogle Scholar
  21. Frank Loh, Florian Wamser, Christian Moldovan, Bernd Zeidler, Dimitrios Tsilimantos, Stefan Valentin, and Tobias Hoßfeld. 2020. Is the Uplink Enough? Estimating Video Stalls from Encrypted Network Traffic. In Proc. of IEEE/IFIP NOMS.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Tarun Mangla, Emir Halepovic, Mostafa Ammar, and Ellen Zegura. 2018. eMIMIC: Estimating HTTP-based Video QoE Metrics from Encrypted Network Traffic. In Proc. of IEEE/IFIP TMA.Google ScholarGoogle ScholarCross RefCross Ref
  23. Tarun Mangla, Emir Halepovic, Rittwik Jana, Kyung-Wook Hwang, Marco Platania, Mostafa Ammar, and Ellen Zegura. 2018. VideoNOC: Assessing Video QoE for Network Operators using Passive Measurements. In Proc. of ACM MMSys.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. H. Mazhar and Z. Shafiq. 2018. Real-time Video Quality of Experience Monitoring for HTTPS and QUIC. In Proc. of IEEE INFOCOM.Google ScholarGoogle Scholar
  25. Irena Orsolic, Dario Pevec, Mirko Suznjevic, and Lea Skorin-Kapov. 2017. A machine learning approach to classifying YouTube QoE based on encrypted network traffic. Proc. of Springer, Multimedia tools and applications (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Alexander Raake, Marie-Neige Garcia, Werner Robitza, Peter List, Steve Göring, and Bernhard Feiten. 2017. A bitstream-based, scalable video-quality model for HTTP adaptive streaming: ITU-T P. 1203.1. In Proc. of IEEE QoMEX.Google ScholarGoogle ScholarCross RefCross Ref
  27. Haakon Riiser, Tore Endestad, Paul Vigmostad, Carsten Griwodz, and Pål Halvorsen. 2011. Video Streaming Using a Location-Based Bandwidth-Lookup Service for Bitrate Planning. ACM TOMCCAP (2011).Google ScholarGoogle Scholar
  28. Michael Seufert, Pedro Casas, Nikolas Wehner, Li Gang, and Kuang Li. 2019. Stream-based machine learning for real-time QoE analysis of encrypted video streaming traffic. In Proc. of IEEE ICIN.Google ScholarGoogle ScholarCross RefCross Ref
  29. William Stallings. 1998. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison-Wesley Longman Publishing Co., Inc.Google ScholarGoogle Scholar
  30. Martino Trevisan, Idilio Drago, and Marco Mellia. 2017. PAIN: A Passive Web Speed Indicator for ISPs. In Proc. of ACM, Internet QoE.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Dimitrios Tsilimantos, Theodoros Karagkioules, and Stefan Valentin. 2018. Classifying Flows and Buffer State for Youtube's HTTP Adaptive Streaming Service in Mobile Networks. In Proc. of ACM MMSys.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen, and F. De Turck. 2016. HTTP/2-Based Adaptive Streaming of HEVC Video Over 4G/LTE Networks. IEEE Comm. Letters (2016).Google ScholarGoogle Scholar
  33. Zhaoguang Wang, Zhiyun Qian, Qiang Xu, Zhuoqing Mao, and Ming Zhang. 2011. An Untold Story of Middleboxes in Cellular Networks. In Proc. of ACM SIGCOMM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Shichang Xu, Subhabrata Sen, Z. Morley Mao, and Yunhan Jia. 2017. Dissecting VOD Services for Cellular: Performance, Root Causes and Best Practices. In Proc. of ACM IMC.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. X. Xu, J. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, and R. Govindan. 2015. Investigating transparent web proxies in cellular networks. In Proc. of PAM.Google ScholarGoogle Scholar
  36. Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A control-theoretic approach for dynamic adaptive video streaming over HTTP. ACM SIGCOMM CCR (2015).Google ScholarGoogle Scholar
  37. Minlan Yu. 2019. Network telemetry: towards a top-down approach. ACM SIGCOMM CCR (2019).Google ScholarGoogle Scholar

Index Terms

  1. Drop the packets: using coarse-grained data to detect video performance issues

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CoNEXT '20: Proceedings of the 16th International Conference on emerging Networking EXperiments and Technologies
        November 2020
        585 pages
        ISBN:9781450379489
        DOI:10.1145/3386367

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 24 November 2020

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • short-paper

        Acceptance Rates

        Overall Acceptance Rate198of789submissions,25%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader