skip to main content
research-article

Specular manifold sampling for rendering high-frequency caustics and glints

Published:12 August 2020Publication History
Skip Abstract Section

Abstract

Scattering from specular surfaces produces complex optical effects that are frequently encountered in realistic scenes: intricate caustics due to focused reflection, multiple refraction, and high-frequency glints from specular microstructure. Yet, despite their importance and considerable research to this end, sampling of light paths that cause these effects remains a formidable challenge.

In this article, we propose a surprisingly simple and general sampling strategy for specular light paths including the above examples, unifying the previously disjoint areas of caustic and glint rendering into a single framework. Given two path vertices, our algorithm stochastically finds a specular subpath connecting the endpoints. In contrast to prior work, our method supports high-frequency normal- or displacement-mapped geometry, samples specular-diffuse-specular ("SDS") paths, and is compatible with standard Monte Carlo methods including unidirectional path tracing. Both unbiased and biased variants of our approach can be constructed, the latter often significantly reducing variance, which may be appealing in applied settings (e.g. visual effects). We demonstrate our method on a range of challenging scenes and evaluate it against state-of-the-art methods for rendering caustics and glints.

Skip Supplemental Material Section

Supplemental Material

a149-zeltner.mp4

mp4

162.2 MB

3386569.3392408.mp4

Presentation video

mp4

888.4 MB

References

  1. Thomas E. Booth. 2007. Unbiased Monte Carlo Estimation of the Reciprocal of an Integral. Nuclear Science and Engineering 156, 3 (2007), 403--407. arXiv:https://doi.org/10.13182/NSE07-A2707 Google ScholarGoogle ScholarCross RefCross Ref
  2. Matt Jen-Yuan Chiang and Brent Burley. 2018. Plausible Iris Caustics and Limbal Arc Rendering. In ACM SIGGRAPH 2018 Talks (Vancouver, British Columbia, Canada) (SIGGRAPH '18). ACM, New York, NY, USA, Article 15, 2 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Luis E. Gamboa, Jean-Philippe Guertin, and Derek Nowrouzezahrai. 2018. Scalable Appearance Filtering for Complex Lighting Effects. ACM Trans. Graph. 37, 6, Article Article 277 (Dec. 2018), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light transport simulation with vertex connection and merging. ACM Trans. Graph. 31, 6, Article 192 (Nov. 2012), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Toshiya Hachisuka and Henrik Wann Jensen. 2009. Stochastic Progressive Photon Mapping. ACM Trans. Graph. 28, 5 (Dec. 2009), 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A path space extension for robust light transport simulation. ACM Transactions on Graphics (TOG) 31, 6 (2012), 191.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Johannes Hanika, Marc Droske, and Luca Fascione. 2015a. Manifold Next Event Estimation. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering) 34, 4 (June 2015), 87--97.Google ScholarGoogle Scholar
  8. Johannes Hanika, Anton Kaplanyan, and Carsten Dachsbacher. 2015b. Improved Half Vector Space Light Transport. Comput. Graph. Forum 34, 4 (July 2015), 65--74. http://dl.acm.org/citation.cfm?id=2858834.2858842Google ScholarGoogle ScholarCross RefCross Ref
  9. John Hubbard, Dierk Schleicher, and Scott Sutherland. 2001. How to Find All Roots of Complex Polynomials by Newton's Method. Inventiones mathematicae 146 (10 2001), 1--33. Google ScholarGoogle ScholarCross RefCross Ref
  10. Homan Igehy. 1999. Tracing Ray Differentials. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '99). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 179--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Wenzel Jakob. 2013. Light transport on path-space manifolds. Ph.D. Dissertation. Cornell University.Google ScholarGoogle Scholar
  12. Wenzel Jakob, Miloš Hašan, Ling-Qi Yan, Ravi Ramamoorthi, and Steve Marschner. 2014. Discrete Stochastic Microfacet Models. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 33, 4 (July 2014), 115:1--115:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Wenzel Jakob and Steve Marschner. 2012. Manifold Exploration: A Markov Chain Monte Carlo Technique for Rendering Scenes with Difficult Specular Transport. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 31, 4 (July 2012), 58:1--58:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Henrik Wann Jensen. 1996. Global illumination using photon maps. In Rendering Techniques' 96. Springer, 21--30.Google ScholarGoogle Scholar
  15. James T. Kajiya. 1986. The Rendering Equation. In Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '86). Association for Computing Machinery, New York, NY, USA, 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Anton Kaplanyan and Carsten Dachsbacher. 2013. Path Space Regularization for Holistic and Robust Light Transport. Computer Graphics Forum 32 (05 2013). Google ScholarGoogle ScholarCross RefCross Ref
  17. Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. The Natural-constraint Representation of the Path Space for Efficient Light Transport Simulation. ACM Trans. Graph. 33, 4, Article 102 (July 2014), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. David Koerner, Jan Novák, Peter Kutz, Ralf Habel, and Wojciech Jarosz. 2016. Subdivision Next-Event Estimation for Path-Traced Subsurface Scattering. In Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations (Dublin, Ireland) (EGSR '16). Eurographics Association, Goslar, DEU, 91--96.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Alexandr Kuznetsov, Miloš Hašan, Zexiang Xu, Ling-Qi Yan, Bruce Walter, Nima Khademi Kalantari, Steve Marschner, and Ravi Ramamoorthi. 2019. Learning Generative Models for Rendering Specular Microgeometry. ACM Trans. Graph. 38, 6, Article Article 225 (Nov. 2019), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Eric Lafortune and Yves Willems. 1993. Bi-Directional Path Tracing. Proceedings of Third International Conference on Computational Graphics and Visualization Techniques (Compugraphics' 93 (01 1993).Google ScholarGoogle Scholar
  21. Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo Aila. 2013. Gradient-Domain Metropolis Light Transport. ACM Trans. Graph. 32, 4, Article Article 95 (July 2013), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Don Mitchell and Pat Hanrahan. 1992. Illumination from Curved Reflectors. SIGGRAPH Comput. Graph. 26, 2 (July 1992), 283--291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient Light-Transport Simulation. Comput. Graph. Forum 36, 4 (July 2017), 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2: A Retargetable Forward and Inverse Renderer. Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Dec. 2019). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Marc Olano and Dan Baker. 2010. LEAN Mapping. In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (Washington, D.C.) (I3D '10). Association for Computing Machinery, New York, NY, USA, 181--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Hao Qin, Xin Sun, Qiming Hou, Baining Guo, and Kun Zhou. 2015. Unbiased Photon Gathering for Light Transport Simulation. ACM Trans. Graph. 34, 6, Article Article 208 (Oct. 2015), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Florian Simon, Johannes Hanika, Alisa Jung, and Carsten Dachsbacher. 2018. Selective guided sampling with complete light transport paths. Transactions on Graphics (Proceedings of SIGGRAPH Asia) 37, 6 (Dec. 2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sebastien Speierer, Christophe Hery, Ryusuke Villemin, and Wenzel Jakob. 2018. Caustic Connection Strategies for Bidirectional Path Tracing. Pixar Technical Memo #18-01.Google ScholarGoogle Scholar
  29. Eric Veach. 1998. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation. Stanford, CA, USA. Advisor(s) Guibas, Leonidas J. AAI9837162.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Eric Veach and Leonidas Guibas. 1995a. Bidirectional estimators for light transport. In Photorealistic Rendering Techniques. Springer, 145--167.Google ScholarGoogle Scholar
  31. Eric Veach and Leonidas J Guibas. 1995b. Optimally combining sampling techniques for Monte Carlo rendering. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM, 419--428.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-Line Learning of Parametric Mixture Models for Light Transport Simulation. ACM Trans. Graph. 33, 4, Article Article 101 (July 2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007. Microfacet Models for Refraction Through Rough Surfaces. In Proceedings of the 18th Eurographics Conference on Rendering Techniques (Grenoble, France) (EGSR'07). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 195--206. Google ScholarGoogle ScholarCross RefCross Ref
  34. Bruce Walter, Shuang Zhao, Nicolas Holzschuch, and Kavita Bala. 2009. Single Scattering in Refractive Media with Triangle Mesh Boundaries. ACM Transactions on Graphics 28, 3 (Aug. 2009), 92:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Beibei Wang, Miloš Hašan, Nicolas Holzschuch, and Ling-Qi Yan. 2019. Example-Based Microstructure Rendering with Constant Storage. Technical Report 2019-08. UC Santa Barbara. https://cs.ucsb.edu/research/tech-reports/2019-08Google ScholarGoogle Scholar
  36. Pascal Weber, Johannes Hanika, and Carsten Dachsbacher. 2017. Multiple Vertex Next Event Estimation for Lighting in Dense, Forward-Scattering Media. Comput. Graph. Forum 36, 2 (May 2017), 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Ling-Qi Yan, Miloš Hašan, Steve Marschner, and Ravi Ramamoorthi. 2016. Position-Normal Distributions for Efficient Rendering of Specular Microstructure. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2016) 35, 4 (2016).Google ScholarGoogle Scholar
  38. Ling-Qi Yan, Miloš Hašan, Wenzel Jakob, Jason Lawrence, Steve Marschner, and Ravi Ramamoorthi. 2014. Rendering Glints on High-Resolution Normal-Mapped Specular Surfaces. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014) 33, 4 (2014).Google ScholarGoogle Scholar
  39. Ling-Qi Yan, Miloš Hašan, Bruce Walter, Steve Marschner, and Ravi Ramamoorthi. 2018. Rendering Specular Microgeometry with Wave Optics. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2018) 37, 4 (2018).Google ScholarGoogle Scholar

Index Terms

  1. Specular manifold sampling for rendering high-frequency caustics and glints

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 39, Issue 4
      August 2020
      1732 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3386569
      Issue’s Table of Contents

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 August 2020
      Published in tog Volume 39, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader