skip to main content
research-article

Simple and scalable frictional contacts for thin nodal objects

Published:12 August 2020Publication History
Skip Abstract Section

Abstract

Frictional contacts are the primary way by which physical bodies interact, yet they pose many numerical challenges. Previous works have devised robust methods for handling collisions in elastic bodies, cloth, or fiber assemblies such as hair, but the performance of many of those algorithms degrades when applied to objects with different topologies or constitutive models, or simply cannot scale to high-enough numbers of contacting points.

In this work we propose a unified approach, able to handle a large class of dynamical objects, that can solve for millions of contacts with unbiased Coulomb friction while keeping computation time and memory usage reasonable. Our method allows seamless coupling between the various simulated components that comprise virtual characters and their environment. Furthermore, our proposed approach is simple to implement and can be easily integrated in popular time integrators such as Projected Newton or ADMM.

Skip Supplemental Material Section

Supplemental Material

a61-daviet.mp4

mp4

160.6 MB

References

  1. V. Acary, F. Cadoux, C. Lemaréchal, and J. Malick. 2011. A formulation of the linear discrete Coulomb friction problem via convex optimization. ZAMM --- J. of App. Math. and Mech. 91, 2 (2011).Google ScholarGoogle Scholar
  2. P. Alart and A. Curnier. 1991. A Mixed Formulation for Frictional Contact Problems Prone to Newton like Solution Methods. Comput. Methods Appl. Mech. Eng. 92, 3 (1991).Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Baraff. 1989. Analytical Methods for Dynamic Simulation of Non-Penetrating Rigid Bodies. In Proc. of ACM SIGGRAPH (SIGGRAPH '89). ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D. Baraff. 1994. Fast Contact Force Computation for Nonpenetrating Rigid Bodies. In Proc. of ACM SIGGRAPH (SIGGRAPH '94). ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. Baraff and A. Witkin. 1998. Large Steps in Cloth Simulation. In Proc. of ACM SIGGRAPH (SIGGRAPH'98). ACM.Google ScholarGoogle Scholar
  6. M. Bergou, B. Audoly, E. Vouga, M. Wardetzky, and E. Grinspun. 2010. Discrete Viscous Threads. ACM Trans. Graph. 29, 4 (2010).Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun. 2008. Discrete Elastic Rods. ACM Trans. Graph. 27, 3 (2008).Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. F. Bertails, B. Audoly, M-P. Cani, B. Querleux, F. Leroy, and J-L. Lévque. 2006. Super-Helices for Predicting the Dynamics of Natural Hair. ACM Trans. Graph. 25, 3 (2006).Google ScholarGoogle Scholar
  9. F. Bertails-Descoubes, F. Cadoux, G. Daviet, and V. Acary. 2011. A Nonsmooth Newton Solver for Capturing Exact Coulomb Friction in Fiber Assemblies. ACM Trans. Graph. 30, 1 (2011).Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. O. Bonnefon and G. Daviet. 2011. Quartic formulation of Coulomb 3D frictional contact. Technical Report RT-0400. INRIA.Google ScholarGoogle Scholar
  11. R. Bridson, R. Fedkiw, and J. Anderson. 2002. Robust Treatment of Collisions, Contact and Friction for Cloth Animation. In ACM Trans. Graph. (SIGGRAPH '02). ACM.Google ScholarGoogle Scholar
  12. E. Catto. 2005. Iterative dynamics with temporal coherence. GDC '05 (2005).Google ScholarGoogle Scholar
  13. P. A. Cundall and O. D. L. Strack. 1979. A discrete numerical model for granular assemblies. Géotechnique 29, 1 (1979).Google ScholarGoogle Scholar
  14. G. Daviet. 2016. Modeling and simulating complex materials subject to frictional contact: application to fibrous and granular media. Ph.D. Dissertation.Google ScholarGoogle Scholar
  15. G. Daviet, F. Bertails-Descoubes, and L. Boissieux. 2011. A Hybrid Iterative Solver for Robustly Capturing Coulomb Friction in Hair Dynamics. ACM Trans. Graph. 30, 6 (2011).Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. C. Duriez, C. Andriot, and A. Kheddar. 2004. Signorini's contact model for deformable objects in haptic simulations. In Int. Conf. on Intelligent Robots and Systems, Vol. 4.Google ScholarGoogle Scholar
  17. K. Erleben. 2007. Velocity-Based Shock Propagation for Multibody Dynamics Animation. ACM Trans. Graph. 26, 2 (2007).Google ScholarGoogle Scholar
  18. K. Erleben. 2017. Rigid Body Contact Problems Using Proximal Operators. In Proc. of Symp. Comp. Anim. (SCA '17). ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. K. Erleben, M. Macklin, S. Andrews, and P.G. Kry. 2019. The Matchstick model for anisotropic friction cones. In Computer Graphics Forum. Wiley.Google ScholarGoogle Scholar
  20. Y. Fang, M. Li, M. Gao, and C. Jiang. 2019. Silly Rubber: An Implicit Material Point Method for Simulating Non-Equilibrated Viscoelastic and Elastoplastic Solids. ACM Trans. Graph. 38, 4 (2019).Google ScholarGoogle Scholar
  21. F. Faure, B. Gilles, G. Bousquet, and D.K. Pai. 2011. Sparse Meshless Models of Complex Deformable Solids. ACM Trans. Graph. 30, 4 (2011).Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Y. Fei, H.T. Maia, C. Batty, C. Zheng, and E. Grinspun. 2017. A Multi-scale Model for Simulating Liquid-hair Interactions. ACM Trans. Graph. 36, 4 (2017).Google ScholarGoogle Scholar
  23. Yun (Raymond) Fei, Christopher Batty, Eitan Grinspun, and Changxi Zheng. 2019. A Multi-Scale Model for Coupling Strands with Shear-Dependent Liquid. ACM Trans. Graph. 38, 6 (2019).Google ScholarGoogle Scholar
  24. M. Fortin and R. Glowinski. 1983. Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Elsevier Science Ltd.Google ScholarGoogle Scholar
  25. M. Fratarcangeli and F. Pellacini. 2015. Scalable partitioning for parallel position based dynamics. In Computer Graphics Forum, Vol. 34. Wiley.Google ScholarGoogle Scholar
  26. M. Fukushima, Z-Q. Luo, and P. Tseng. 2002. Smoothing Functions for Second-Order-Cone Complementarity Problems. SIAM J. on Optimization 12, 2 (2002).Google ScholarGoogle Scholar
  27. J. Gascón, J.S. Zurdo, and M.A. Otaduy. 2010. Constraint-Based Simulation of Adhesive Contact. In Proc. of Symp. Comp. Anim. (SCA '10). Eurographics Association.Google ScholarGoogle Scholar
  28. T. Goldstein, B. O'Donoghue, S. Setzer, and R. Baraniuk. 2014. Fast Alternating Direction Optimization Methods. SIAM J. on Imaging Sciences 7, 3 (2014).Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. G. Gornowicz and S. Borac. 2015. Efficient and Stable Approach to Elasticity and Collisions for Hair Animation. In Symp. on Digital Production (DigiPro '15). ACM.Google ScholarGoogle Scholar
  30. E. Grinspun, A.N. Hirani, M. Desbrun, and P. Schröder. 2003. Discrete Shells. In Proc. of Symp. Comp. Anim. (SCA '03). Eurographics Association.Google ScholarGoogle Scholar
  31. S. Hadap and N. Magnenat-Thalmann. 2001. Modeling Dynamic Hair as a Continuum. Computer Graphics Forum 20, 3 (2001).Google ScholarGoogle ScholarCross RefCross Ref
  32. X. Han, T.F. Gast, Q. Guo, S. Wang, C. Jiang, and J. Teran. 2019. A Hybrid Material Point Method for Frictional Contact with Diverse Materials. Proc. ACM Comput. Graph. Interact. Tech. 2, 2 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. D. Harmon, E. Vouga, R. Tamstorf, and E. Grinspun. 2008. Robust Treatment of Simultaneous Collisions. ACM Trans. Graph. 27, 3 (2008).Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. T. Heyn. 2013. On the modeling, simulation, and visualization of many-body dynamics problems with friction and contact. Ph.D. Dissertation.Google ScholarGoogle Scholar
  35. J-B. Hiriart-Urruty and C. Lemaréchal. 1993. Convex Analysis and Minimization Algorithms. Springer.Google ScholarGoogle Scholar
  36. T. Inglis, M-L. Eckert, J. Gregson, and N. Thuerey. 2017. Primal-Dual Optimization for Fluids. In Computer Graphics Forum, Vol. 36. Wiley.Google ScholarGoogle Scholar
  37. M. Jean. 1999. The non-smooth contact dynamics method. Comp. Meth. Appl. Mech. Engng. 177, 3 (1999).Google ScholarGoogle Scholar
  38. M. Jean and J.J. Moreau. 1988. Dynamics in the presence of unilateral contacts and dry friction : a numerical approach. In Second Meeting on Unilateral Problems in Structural Analysis (Unilateral Problems in Structural Analysis, 2). Springer.Google ScholarGoogle Scholar
  39. M. Jean and J.J. Moreau. 1992. Unilaterality and dry friction in the dynamics of rigid body collections. In 1st Contact Mechanics International Symposium.Google ScholarGoogle Scholar
  40. C. Jiang, T. Gast, and J. Teran. 2017. Anisotropic Elastoplasticity for Cloth, Knit and Hair Frictional Contact. ACM Trans. Graph. 36, 4 (2017).Google ScholarGoogle Scholar
  41. F. Jourdan, P. Alart, and M. Jean. 1998. A Gauss-Seidel like algorithm to solve frictional contact problems. Comp. Meth. Appl. Mech. Engng. 155, 1 (1998).Google ScholarGoogle ScholarCross RefCross Ref
  42. D.M. Kaufman, S. Sueda, D.L. James, and D.K. Pai. 2008. Staggered Projections for Frictional Contact in Multibody Systems. ACM Trans. Graph. 27, 5 (2008).Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. D.M. Kaufman, R. Tamstorf, B. Smith, J-M. Aubry, and E. Grinspun. 2014. Adaptive Nonlinearity for Collisions in Complex Rod Assemblies. ACM Trans. Graph. 33, 4 (2014).Google ScholarGoogle Scholar
  44. J. Li, G. Daviet, R. Narain, F. Bertails-Descoubes, M. Overby, G.E. Brown, and L. Boissieux. 2018. An Implicit Frictional Contact Solver for Adaptive Cloth Simulation. ACM Trans. Graph. 37, 4 (2018).Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and V. Makoviychuk. 2019. Non-Smooth Newton Methods for Deformable Multi-Body Dynamics. ACM Trans. Graph. 38, 5 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. M. Macklin, M. Müller, and N. Chentanez. 2016. XPBD: Position-Based Simulation of Compliant Constrained Dynamics. In Motion in Games (MIG '16). ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. S. Martin, P. Kaufmann, M. Botsch, E. Grinspun, and M. Gross. 2010. Unified Simulation of Elastic Rods, Shells, and Solids. ACM Trans. Graph. 29, 4 (2010).Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. H. Mazhar, T. Heyn, D. Negrut, and A. Tasora. 2015. Using Nesterov's Method to Accelerate Multibody Dynamics with Friction and Contact. ACM Trans. Graph. 34, 3 (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. A. McAdams, A. Selle, K. Ward, E. Sifakis, and J. Teran. 2009. Detail Preserving Continuum Simulation of Straight Hair. ACM Trans. Graph. 28, 3 (2009).Google ScholarGoogle Scholar
  50. D.L. Michels, V.T. Luan, and M. Tokman. 2017. A Stiffly Accurate Integrator for Elasto-dynamic Problems. ACM Trans. Graph. 36, 4 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. M. Moore and J. Wilhelms. 1988. Collision Detection and Response for Computer Animation. In Proc. of ACM SIGGRAPH (SIGGRAPH '88). ACM.Google ScholarGoogle Scholar
  52. M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. 2007. Position based dynamics. J. of Visual Communication and Image Representation 18, 2 (2007).Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. R. Narain, M. Overby, and G.E. Brown. 2016. ADMM ⊇ Projective Dynamics: Fast Simulation of General Constitutive Models. In Proc. of Symp. Comp. Anim. (SCA '16). Eurographics Association.Google ScholarGoogle Scholar
  54. M.A. Otaduy, R. Tamstorf, D. Steinemann, and M. Gross. 2009. Implicit Contact Handling for Deformable Objects. Computer Graphics Forum 28, 2 (2009).Google ScholarGoogle ScholarCross RefCross Ref
  55. X. Provot. 1997. Collision and self-collision handling in cloth model dedicated to design garments. In Computer Animation and Simulation '97, Daniel Thalmann and Michiel van de Panne (Eds.). Springer Vienna.Google ScholarGoogle ScholarCross RefCross Ref
  56. M. Raous, L. Cangémi, and M. Cocu. 1999. A consistent model coupling adhesion, friction, and unilateral contact. Comp. Meth. Appl. Mech. Engng. 177, 3--4 (1999).Google ScholarGoogle ScholarCross RefCross Ref
  57. M. Renouf and P. Alart. 2005. Conjugate gradient type algorithms for frictional multi-contact problems: applications to granular materials. Comp. Meth. Appl. Mech. Engng. 194, 18 (2005).Google ScholarGoogle ScholarCross RefCross Ref
  58. D.E. Stewart and J.C. Trinkle. 1996. An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction. Int. J. for Num. Meth. in Engng. 39, 15 (1996).Google ScholarGoogle ScholarCross RefCross Ref
  59. A. Stomakhin, R. Howes, C. Schroeder, and J.M. Teran. 2012. Energetically Consistent Invertible Elasticity. In Proc. of Symp. Comp. Anim. (EUROSCA'12). Eurographics Association.Google ScholarGoogle Scholar
  60. A. Stomakhin, J. Wretborn, K. Blom, and G. Daviet. 2020. Underwater bubbles and coupling. In ACM SIGGRAPH 2020 Talks (SIGGRAPH '20).Google ScholarGoogle Scholar
  61. M. Tang, D. Manocha, M.A. Otaduy, and R. Tong. 2012. Continuous penalty forces. ACM Trans. Graph. 31, 4 (2012).Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. A. Tasora. 2013. Efficient simulation of contacts friction and constraints using a modified spectral projected gradient method. In roceedings of WSCG 2013.Google ScholarGoogle Scholar
  63. J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. 2005. Robust quasistatic finite elements and flesh simulation. In Proc. of Symp. Comp. Anim.Google ScholarGoogle Scholar
  64. R. Tonge, F. Benevolenski, and A. Voroshilov. 2012. Mass Splitting for Jitter-Free Parallel Rigid Body Simulation. ACM Trans. Graph. 31, 4 (2012).Google ScholarGoogle Scholar
  65. M. Verschoor and A.C. Jalba. 2019. Efficient and Accurate Collision Response for Elastically Deformable Models. ACM Trans. Graph. 38, 2 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. K. Yamane and Y. Nakamura. 2006. Stable penalty-based model of frictional contacts. In ICRA'06. IEEE.Google ScholarGoogle Scholar
  67. Y. Yue, B. Smith, P.Y. Chen, M. Chantharayukhonthorn, K. Kamrin, and E. Grinspun. 2018. Hybrid Grains: Adaptive Coupling of Discrete and Continuum Simulations of Granular Media. ACM Trans. Graph. 37, 6 (2018).Google ScholarGoogle Scholar

Index Terms

  1. Simple and scalable frictional contacts for thin nodal objects

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 39, Issue 4
      August 2020
      1732 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3386569
      Issue’s Table of Contents

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 August 2020
      Published in tog Volume 39, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader