skip to main content
10.1145/3386762.3386783acmotherconferencesArticle/Chapter ViewAbstractPublication PagesieeaConference Proceedingsconference-collections
research-article

Microbial Fuel Cell Using a Monoculture of Bacterial Could Be Use as Renewable Energy Source or Can Be an Alternative Bioremediation Method for the Removal of Toxic Organic?

Published:29 May 2020Publication History

ABSTRACT

In recent decades, the consumption of energy within the world has had a prosperous trend. Energy sources are classified into three batches: fossil fuels, nuclear sources, and renewable sources.

Non-renewable sources of energy, nuclear and fossil negatively influence nature owing to the emission of carbon dioxide that severely imperiled human life through its drastic aftermaths, such as global warming and atmospheric pollution.

However, miscellaneous countries around the world have made remarkable efforts to find a solution for the energy crisis by using renewable energy sources such as solar energy, wind, energy produced from water, fuel cells microbial fuel cells (MFCs) which generates energy.

Microbial fuel cells (MFCs) are devices composed of anode and cathode compartments.

In this study, we show monoculture MFC and not of mixtures bacterial as commonly used.

Operating two cambers MFC with a monoculture of Cupriavidus basilensis under a constant external resistor of 1 kΩ using a minimal medium containing phenol (MMP). The examination of the current generated shows that the maximal current was only 310 mA/m2.

References

  1. D. R. Lovley. "Microbial fuel cells: novel microbial physiologies and engineering approaches", Curr Opin Biotechnol, 17, pp. 327--332, (2006).Google ScholarGoogle ScholarCross RefCross Ref
  2. M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour, S. E Oh. "Microbial fuel cell as new technology for bioelectricity generation: A review", Alexandria Engineering Journal, 54, pp. 745--756, (2015).Google ScholarGoogle ScholarCross RefCross Ref
  3. R.M. Allen, H.P. Bennetto. "Microbial fuel-cells: electricity production from carbohydrates", Appl. Biochem. Biotechnol, 39, pp. 27--40, (1993).Google ScholarGoogle ScholarCross RefCross Ref
  4. K. Rabaey, N. Boon, S.D. Siciliano, M. Verhaege, W. Verstraete. "Biofuel cells select for microbial consortia that self-mediate electron transfer", Appl. Environ. Microbiol, 70, pp. 5373--5382, (2004).Google ScholarGoogle ScholarCross RefCross Ref
  5. M. E. Hernandez, D. K. Newman. "Extracellular electron transfer", Cell Mol Life Sci, 58, pp. 1562--1571, (2001).Google ScholarGoogle ScholarCross RefCross Ref
  6. L.B. Wingard, C.H. Shaw, J.F. Castner. "Bioelectrochemical fuel cells", Enzyme Microb. Technol, 4, pp. 137--142, (1982).Google ScholarGoogle ScholarCross RefCross Ref
  7. U. Schröder. "Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency". Phys Chem Chem Phys, 9(21), pp. 2619--2629, (2017).Google ScholarGoogle ScholarCross RefCross Ref
  8. O. Bretschger, A. Obraztsova, C. A. Sturm, I. S. Chang, Y. A. Gorby, S. B. Reed, D. E. Culley, C. L. Reardon, S. Barua, M. F. Romine, J. Zhou, A. S. Beliaev, R. Bouhenni, D. Saffarini, F. Mansfeld, B. H. Kim, J. K. Fredrickson, K. H. Nealson. "Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants", Appl. Environ. Microbiol, 73, pp. 7003--7012, (2007).Google ScholarGoogle ScholarCross RefCross Ref
  9. D. R. Bond, D. R. Lovley. "Electricity production by Geobacter sulfurreducens attached to electrodes", Appl Environ Microbiol, 69, pp. 1548--1555, (2003).Google ScholarGoogle ScholarCross RefCross Ref
  10. S. Gaspard, F. Vazquez, C. Holliger. "Localization and solubilization of the Iron (III) reductase of Geobacter sulfurreducens", Appl. Environ. Microbiol, 64, pp. 94--3188, (1998).Google ScholarGoogle ScholarCross RefCross Ref
  11. Y. A. Gorby, S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. A. Saffarini, E. A. Hill, L. Shi, D. A. Elias, D. W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K. H. Nealson, J. K. Fredrickson. "Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms", Proc. Natl. Acad. Sci. U S A, 103, pp. 11358--11363, (2006).Google ScholarGoogle ScholarCross RefCross Ref
  12. D.T. Schwartz, M. F. Buehler, D.X. Christiansen, E. J. Davis. "In-situ monitoring of electrochemical transport processes in Hanford Grout Vault Soil", J. Hazard. Mater, 55, pp. 23--37, (1997).Google ScholarGoogle ScholarCross RefCross Ref
  13. M. Owsianiak, A. Szulc, L. Chrzanowski, P. Cyplik, M. Bogacki, A. K. Olejnik-Schmidt, H. J. Heipieper. "Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity", Appl. Microbiol. Biotechnol, 84, pp. 545--553, (2009).Google ScholarGoogle ScholarCross RefCross Ref
  14. E. Friedman, et al. "Potentiostatically Poised Electrodes Mimic Iron Oxide and Interact with Soil Microbial Communities to Alter the Biogeochemistry of Arctic Peat Soils". Minerals, 3(3), pp. 318--336 (2013).Google ScholarGoogle ScholarCross RefCross Ref
  15. M.C. Potter, "Electrical effects accompanying the decomposition of organic compounds", Proc. R. Soc. Lond. B Biol. Sci, 84, pp. 160--276, (1911).Google ScholarGoogle Scholar
  16. M. Vidali. "Bioremedation. An overview", Pure. Appl. Chem, 73, pp. 1163--1172, (2001).Google ScholarGoogle ScholarCross RefCross Ref
  17. J. D. Coates, R. Chakraborty, J. G. Lack, S. M. O'Connor, K. A. Cole, K. S. Bender, L. A. Achenbach. "Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas", Nature, 411, pp.1039--1043, (2001).Google ScholarGoogle ScholarCross RefCross Ref
  18. J. Aislabie, J. Foght, D. Saul. "Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antartica", Polar. Biol, 23, pp. 183--188, (2000).Google ScholarGoogle ScholarCross RefCross Ref
  19. C. Chen, R. T. Taylor. "Thermophilic biodegradation of BETX by two consortia of anaerobic bacteria", Appl. Microbiol. Biotechnol, 48, pp. 121--128, (1997).Google ScholarGoogle ScholarCross RefCross Ref
  20. R. Chakraborty, S. M. O'Connor, E. Chan, J. D. Coates. "Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene Compounds by Dechloromonas Strain RCB", Appl. Environ. Microbiol, 71, pp. 8649--8655, (2005).Google ScholarGoogle ScholarCross RefCross Ref
  21. B. Liang, H. Cheng, J.D. Van Nostrand, J. Ma, H. Yu, D. Kong, W. Ren, L. Wu, A. Wang. "Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover", Water Res, 54, pp. 137--148, (2014).Google ScholarGoogle ScholarCross RefCross Ref
  22. G.B. Patel, B.J Agnew, C.J Dicaire. "Inhibition of pure cultures of methanogens by benzene ring compounds", Appl. Environ. Microbiol., 57, pp. 2969--2974, (1991).Google ScholarGoogle ScholarCross RefCross Ref
  23. G.A. Hill, C.W. Robinson. "Substrate inhibition kinetics: phenol degradation by Pseudomonas putida", Biotechnol. Bioeng, 17, pp. 1599--1615, (1975).Google ScholarGoogle ScholarCross RefCross Ref
  24. H. Friman, A. Schechter, Y. Nitzan, R. Cahan. "Phenol degradation in bio-electrochemical cells", Int'l. Biodeterioration & Biodegradation, 84, pp. 155--160, (2013).Google ScholarGoogle ScholarCross RefCross Ref
  25. H. Friman, A. Schechter, Y. Ioffe, Y. Nitzan, R. Cahan. "Current production in a microbial fuel cell using a pure culture of Cupriavidus basilensis growing in acetate or phenol as a carbon source", Microbial Biotechnology, 6940, pp. 425--434, (2013).Google ScholarGoogle ScholarCross RefCross Ref
  26. J. Pandey, A. Chauhan, R. K. Jain. "Integrative approaches for assessing the ecological sustainability of in situ bioremediation", FEMS Microbiol. Rev, 33, pp. 324--375, (2009).Google ScholarGoogle ScholarCross RefCross Ref
  27. H. Luo, G. Liu, S. Jin. "Phenol degradation in microbial fuel cells", Chem. Eng. J, 147, pp. 259--264, (2009).Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Microbial Fuel Cell Using a Monoculture of Bacterial Could Be Use as Renewable Energy Source or Can Be an Alternative Bioremediation Method for the Removal of Toxic Organic?

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      IEEA '20: Proceedings of the 2020 The 9th International Conference on Informatics, Environment, Energy and Applications
      March 2020
      138 pages
      ISBN:9781450376891
      DOI:10.1145/3386762

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 29 May 2020

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)11
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader