skip to main content
10.1145/3386901.3388942acmconferencesArticle/Chapter ViewAbstractPublication PagesmobisysConference Proceedingsconference-collections
research-article

Towards scalable backscatter sensor mesh with decodable relay and distributed excitation

Published: 15 June 2020 Publication History

Abstract

Backscatter communication, in which data is conveyed through reflecting excitation signals, has been advocated as a promising green technology for Internet of Things (IoT). Existing backscatter solutions however are mostly centralized, relying on a single excitation source, typically within one hop. Though recent works have demonstrated the viability of multi-hop backscatter, the excitation signal remains centralized, which attenuates quickly and fundamentally limits the communication scope. For long-range and high-quality communication, distributed excitations are expected and also naturally available as ambient signals (WiFi, BLE, cellular, FM, light, sound, etc.), albeit not being explored for boosting nearby tags for relaying.
Given the existence of distributed excitation, a relay tag has to be decodable, i.e., be able to first decode its previous hop's information and then backscatter to the next hop with a boost from a nearby excitation whenever possible. In this paper, we present DecRel, a decodable tag relay solution towards a backscatter sensor mesh for universal and scalable deployment with distributed excitation. DecRel is also an innovative wireless sensor architecture for simultaneous sensing and relay. It incorporates a relay path that uses envelope detection for decoding, and a sensing path that converts its own sensor data into a baseband for amplitude-demodulation by the next hop tag's relay path. The two paths then backscatter their respective data to different frequencies to avoid interference. We have built a working DecRel tag prototype using FPGA, discrete components, and off-the-shelf analog devices. Our experiments show superior performance of DecRel as compared with the state-of-the-art non-decodable tag relay: specifically, a digital baseband's multi-hop throughput of up to 40Kbps (200x improvement), an analog baseband's equivalent multi-hop throughput of up to 768Kbps (3000x improvement), and a tag-to-tag distance of up to 4.8m (10x improvement) with a hop count of up to 6. DecRel tag consumes 337.9μW of power using IC design.

References

[1]
http://yuneec.uk/index.php/products/h520-uav/h520-craft-uav#h520-copter
[2]
https://www.raspberrypi.org/
[3]
S. Gollakota, M. S. Reynolds, J. R. Smith, and D. J. Wetherall. The Emergence of RF-Powered Computing. Computer, 47(1): 32--39, 2014.
[4]
A. Abedi, M. H. Mazaheri, O. Abari, and T. Brecht. WiTAG: Rethinking Backscatter Communication for WiFi Networks. ACM HotNets, 2018.
[5]
B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall. WiFi Backscatter: Internet Connectivity for RF-Powered Devices. ACM SIGCOMM, 2014.
[6]
D. Bharadia, K. Joshi, M. Kotaru, and S. Katti. BackFi: High Throughput WiFi Backscatter. ACM SIGCOMM, 2015.
[7]
B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith. Passive Wi-Fi: Bringing Low Power to Wi-Fi Transmissions. USENIX NSDI, 2016.
[8]
V. Iyer, V. Talla, B. Kellogg, S. Gollakota, and J. R. Smith. Inter-Technology Backscatter: Towards Internet Connectivity for Implanted Devices. ACM SIGCOMM, 2016.
[9]
P. Zhang, M. Rostami, P. Hu, and D. Ganesan. Enabling Practical Backscatter Communication for On-body Sensors. ACM SIGCOMM, 2016.
[10]
P. Zhang, D. Bharadia, K. Joshi, and S. Katti. HitchHike: Practical Backscatter Using Commodity WiFi. ACM SenSys, 2016.
[11]
O. Abari, D. Vasisht, D. Katabi, and A. Chandrakasan. Caraoke: An E-Toll Transponder Network for Smart Cities. ACM SIGCOMM, 2015.
[12]
J. Gummeson, P. Zhang, and D. Ganesan. Flit: A Bulk Transmission Protocol for RFID-Scale Sensors. ACM MobiSys, 2012.
[13]
P. Hu, P. Zhang, and D. Ganesan. Laissez-faire: Fully Asymmetric Backscatter Communication. ACM SIGCOMM, 2015.
[14]
P. Hu, P. Zhang, M. Rostami, and D. Ganesan. Braidio: An Integrated Active-Passive Radio for Mobile Devices with Asymmetric Energy Budgets. ACM SIGCOMM, 2016.
[15]
B. Kellogg, V. Talla, and S. Gollakota. Bringing Gesture Recognition to All Devices. USENIX NSDI, 2014.
[16]
V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith. Ambient Backscatter: Wireless Communication Out of Thin Air. ACM SIGCOMM, 2013.
[17]
V. Liu, V. Talla, and S. Gollakota. Enabling Instantaneous Feedback with Full-Duplex Backscatter. ACM MobiCom, 2014.
[18]
A. N. Parks, A. Liu, S. Gollakota, and J. R. Smith. Turbocharging Ambient Backscatter Communication. ACM SIGCOMM, 2014.
[19]
J. Wang, F. Adib, R. Knepper, D. Katabi, and D. Rus. RF-Compass: Robot Object Manipulation Using RFID. ACM MobiCom, 2013.
[20]
J. Wang, H. Hassanieh, D. Katabi, and P. Indyk. Efficient and Reliable Low-Power Backscatter Networks. ACM SIGCOMM, 2012.
[21]
P. Zhang and D. Ganesan. Enabling Bit-by-Bit Backscatter Communication in Severe Energy Harvesting Environments. USENIX NSDI, 2014.
[22]
P. Zhang, J. Gummeson, and D. Ganesan. Blink: A High Throughput Link Layer for Backscatter Communication. ACM MobiSys, 2012.
[23]
P. Zhang, P. Hu, V. Pasikanti, and D. Ganesan. Ekhonet: High Speed Ultra Low-Power Backscatter for Next Generation Sensors. ACM MobiCom, 2014.
[24]
A. Wang, V. Iyer, V. Talla, J. R. Smith, and S. Gollakota. FM Backscatter: Enabling Connected Cities and Smart Fabrics. USENIX NSDI, 2017.
[25]
V. Talla, B. Kellogg, S. Gollakota, and J. R. Smith. Battery-free Cellphone. ACM UbiComp, 2017.
[26]
P. Zhang, C. Josephson, D. Bharadia, and S. Katti. FreeRider: Backscatter Communication Using Commodity Radios. ACM CoNEXT, 2017.
[27]
Y. Ma, N. Selby, and F. Adib. Drone Relays for Battery-Free Networks. ACM SIGCOMM, 2017.
[28]
X. Xu, Y. Shen, J. Yang, C. Xu, G. Shen, G. Chen, and Y. Ni. PassiveVLC: Enabling Practical Visible Light Backscatter Communication for Battery-free IoT Applications. ACM MobiCom, 2017.
[29]
V. Talla, M. Hassar, B. Kellogg, A. Najafi, J. Smith, and S. Gollakota. LoRa Backscatter: Enabling the Vision of Ubiquitous Connectivity. ACM Ubicomp, 2017.
[30]
J. Zhao, W. Gong, and J. Liu. X-Tandem: Towards Multi-hop Backscatter Communication with Commodity WiFi. ACM MobiCom, 2018.
[31]
Y. Peng, L. Shangguan, Y. Hu, Y. Qian, X. Lin, X. Chen, D. Fang, and K. Jamieson. PLoRa: Passive Long-Range Data Networks from Ambient LoRa Transmissions. ACM SIGCOMM, 2018.
[32]
D. Vasisht, G. Zhang, O. Abari, D. Katabi, H.-M. Lu, and J. Flanz. In-body Backscatter Communication and Localization. ACM SIGCOMM, 2018.
[33]
S. Naderiparizi, M. Hessar, V. Talla, S. Gollakota, and J. R. Smith. Towards Battery-Free HD Video Streaming. USENIX NSDI, 2018.
[34]
M. Rostami, J. Gummeson, A. Kiaghadi, and D. Ganesan. Polymorphic Radios: A New Design Paradigm for Ultra-low Power Communication. ACM SIGCOMM, 2018.
[35]
M. Kotaru, P. Zhang, and S. Katti. Localizing Low-power Backscatter Tags Using Commodity WiFi. ACM CoNEXT, 2017.
[36]
V. Iyer, R. Nandakumar, A. Wang, S. B. Fuller, and S. Gollakota. Living IoT: A Flying Wireless Platform on Live Insects. ACM MobiCom, 2019.
[37]
M. Hessar, A. Najafi, and S. Gollakota. NetScatter: Enabling Large-Scale Backscatter Networks. USENIX NSDI, 2019.
[38]
V. Talla and J. R. Smith. Hybrid analog-digital backscatter: A new approach for battery-free sensing. IEEE RFID, 2013.
[39]
A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R. Smith. Design of An RFID-based Battery-free Programmable Sensing Platform. IEEE Trans. Instrumentation and Measurement, 57(11): 2608--2615, 2008.
[40]
D. J. Yeager, A. P. Sample, and J. R. Smith. Wisp: A Passively Powered UHF RFID Tag with Sensing and Computation. RFID handbook: Applications, technology, security, and privacy, (2008): 261--278, 2008.
[41]
S. Park, C. Min, and S.-H. Cho. A 95nw Ring Oscillator-based Temperature Sensor for RFID Tags in 0.13 um CMOS. IEEE International Symposium on Circuits and Systems (ISCAS), 2009.
[42]
S. Roy, V. Jandhyala, J. Smith, D. Wetherall, B. Otis, R. Chakraborty, M. Buettner, D. Yeager, Y.-C. Ko, and A. Sample. RFID: From Supply Chains to Sensor Nets. Proceedings of the IEEE, 98(9): 1583--1592, 2010.
[43]
S. Katti, D. Katabi, H. Balakrishnan, and M. Medard. Symbol-level Network Coding for Wireless Mesh Networks. ACM SIGCOMM, 2008.
[44]
O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection Tree Protocol. ACM SenSys, 2009.
[45]
W. R. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive Protocols for Information Dissemination in Wireless Sensor Networks. ACM MobiCom, 1999.
[46]
M. Zorzi and R. R. Rao. Geographic Random Forwarding (GeRaF) for Ad Hoc and Sensor Networks: Energy and Latency Performance. IEEE Trans. Mobile Computing, 2(4): 349--365, 2003.
[47]
S. Roundy, P. K. Wright, and J. Rabaey. A Study of Low Level Vibrations as A Power Source for Wireless Sensor Nodes. ELSEVIER Computer Communications, 26(11): 1131--1144, 2003.
[48]
J. Polastre, J. Hill, and D. Culler. Versatile Low Power Media Access for Wireless Sensor Networks. ACM SenSys, 2004.
[49]
S. Johan, X. Zeng, T. Unander, A. Koptyug, and H.-E. Nilsson. Remote Moisture Sensing Utilizing Ordinary RFID Tags. IEEE Sensors, 2007.
[50]
R. Bhattacharyya, C. Floerkemeier, and S. Sarma. Low-cost, Ubiquitous RFID-tag-antenna-based Sensing. Proceedings of the IEEE, 98(9):1593--1600, 2010.
[51]
J.F. Ensworth and M.S. Reynolds. Every Smart Phone Is A Backscatter Reader: Modulated Backscatter Compatibility with Bluetooth 4.0 Low Energy (BLE) Devices. IEEE RFID, 2015.
[52]
R. Zhao, F. Zhu, S. Peng, Y. Feng, X. Tian, H. Yu, and X. Wang. OFDMA-Enabled Wi-Fi Backscatter. ACM MobiCom, 2019.
[53]
L. Yang, Y. Chen, X. Li, C. Xiao, Mo Li, and Y. Liu. Tagoram: Real-Time Tracking of Mobile RFID Tags to High Precision Using COTS Devices. ACM MobiCom, 2014.
[54]
Z. Luo, Q. Zhang, Y. Ma, M. Singh, and F. Adib. 3D Backscatter Localization for Fine-Grained Robotics. USENIX NSDI, 2019.
[55]
J. Jang and F. Adib. Underwater Backscatter Networking. ACM SIGCOMM, 2019.
[56]
https://www.msoon.com/lvpm-software-download
[57]
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-design.html
[58]
https://www.tsmc.com/english/dedicatedFoundry/technology/logic.htm#l_65nm_technology
[59]
https://www.xilinx.com/products/design-tools/xst.html
[60]
http://www.rfidtagworld.com/products/Ear-Jack-reader-UHF_1056.html
[61]
M. Eslami, M. Taherzadeh-Sani, and F. Nabki. A 1-V 690μw 8-bit 200 MS/s Flash-SAR ADC with Pipelined Operation of Flash and SAR ADCs in 0.13μm CMOS. IEEE International Symposium on Circuits and Systems, 2015.
[62]
L. Li, H. Xiaoguang, C. Ke and H. Ketai. The Applications of WiFi-based Wireless Sensor Network in Internet of Things and Smart Grid. IEEE Conference on Industrial Electronics and Applications, 2011.
[63]
C. Zhang, X. Zhang, and R. Chandra. Energy Efficient WiFi Display. ACM MobiSys, 2015.
[64]
D. Halperin, B. Greenstein, A. Sheth, and D. Wetherall. Demystifying 802.11n Power Consumption. ACM HotPower, 2010.

Cited By

View all

Index Terms

  1. Towards scalable backscatter sensor mesh with decodable relay and distributed excitation

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      MobiSys '20: Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services
      June 2020
      496 pages
      ISBN:9781450379540
      DOI:10.1145/3386901
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 15 June 2020

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. backscatter
      2. decodable relay
      3. internet of things
      4. mesh networks

      Qualifiers

      • Research-article

      Funding Sources

      • Canada NSERC Discovery grant
      • Industrial Canada Technology Demonstration Program (TDP)

      Conference

      MobiSys '20
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 274 of 1,679 submissions, 16%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)44
      • Downloads (Last 6 weeks)6
      Reflects downloads up to 01 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)i-Sample: Augment Domain Adversarial Adaptation Models for WiFi-based HARACM Transactions on Sensor Networks10.1145/361649420:2(1-20)Online publication date: 10-Jan-2024
      • (2024)Native WiFi BackscatterIEEE/ACM Transactions on Networking10.1109/TNET.2024.340908132:5(3888-3900)Online publication date: Oct-2024
      • (2024)Universal WiFi Backscatter With Ambient Space-Time StreamsIEEE/ACM Transactions on Networking10.1109/TNET.2023.333692232:3(2042-2052)Online publication date: Jun-2024
      • (2024)Efficient Single-Symbol Backscatter With Uncontrolled Ambient OFDM WiFiIEEE/ACM Transactions on Networking10.1109/TNET.2023.333222032:2(1797-1806)Online publication date: Apr-2024
      • (2024)Bitalign: Bit Alignment for Bluetooth Backscatter CommunicationIEEE Transactions on Mobile Computing10.1109/TMC.2024.337481523:10(10191-10201)Online publication date: Oct-2024
      • (2024)Meta-BackCom: Hybrid Reflect-Decode-Forward Online Relaying in Metasurface-Enhanced Backscatter NetworksIEEE Network10.1109/MNET.107.220062338:3(146-153)Online publication date: May-2024
      • (2024)Challenges of ambient WiFi backscatter systems in healthcare applicationsComputer Networks10.1016/j.comnet.2024.110608251(110608)Online publication date: Sep-2024
      • (2024)Concurrent Backscatter for Smart LogisticsPractical Backscatter Communication for the Internet of Things10.1007/978-3-031-59254-6_5(77-97)Online publication date: 21-Apr-2024
      • (2024)Cross-Technology Backscatter for Smart Health MonitoringPractical Backscatter Communication for the Internet of Things10.1007/978-3-031-59254-6_4(59-75)Online publication date: 21-Apr-2024
      • (2024)Spectrum-Efficient Backscatter for Smart HomesPractical Backscatter Communication for the Internet of Things10.1007/978-3-031-59254-6_3(37-58)Online publication date: 21-Apr-2024
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      EPUB

      View this article in ePub.

      ePub

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media