skip to main content
10.1145/3388769.3407458acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
course

Advances in Monte Carlo rendering: the legacy of Jaroslav Křivánek

Published: 17 August 2020 Publication History

Abstract

Jaroslav Křivánek's research aimed at finding the one robust and efficient light transport simulation algorithm that would handle any given scene with any complexity of transport. He had a clear and unique vision of how to reach this ambitious goal. On his way, he created an impressive track of significant research contributions. In this course, his collaborators will tell the story of Jaroslav's quest for that "one" algorithm and discuss his impact and legacy.

References

[1]
Křivánek, J. Gautron, P. - Practical Global Illumination with Irradiance Caching - Morgan and Claypool Publishers, March 2009
[2]
Gautron, P., Křivánek, J., Pattanaik, S. N., Bouatouch, K. - A novel hemispherical basis for accurate and efficient rendering - Eurographics Symposium on Rendering 2004, 321--330
[3]
Gautron, P., Křivánek, J., Bouatouch, K., Pattanaik, S. N. - Radiance cache splatting: A GPU-friendly global illumination algorithm - Eurographics Symposium on Rendering 2005 - 55--64
[4]
Gautron, P., Bouatouch, K., Pattanaik, S. N. - Temporal radiance caching - IEEE Transactions on Visualization and Computer Graphics 13, 5 (September/October 2007)
[5]
Jarosz, W., Donner, C., Zwicker, M., Jensen, H. W. - Radiance caching for participating media - ACM Trans. Graph. 27, 1 (March 2008)
[6]
Jarosz, W., Zwicker, M., Jensen, H. W. - Irradiance gradients in the presence of participating media and occlusions - Eurographics Symposium on Rendering 2008, 27, 4
[7]
Křivánek, J. Gautron, P., Bouatouch, K., Pattanaik, S. - Improved radiance gradient computation - Spring Conference on Computer graphics 2005 - 155--159
[8]
Křivánek, J. Gautron, P., Pattanaik, S., Bouatouch, K.- Radiance caching for efficient global illumination computation - IEEE Transactions on Visualization and Computer Graphics 11, 5 (September/October 2005)
[9]
Křivánek, J., Konttinen, J., Bouatouch, K., Pattanaik, S., Žára, J. - Fast approximation to spherical harmonic rotation - Spring Conference on Computer graphics 2006
[10]
Křivánek, J., Konttinen, J., Bouatouch, K., Pattanaik, S., Žára, J. - Making radiance and irradiance caching practical: Adaptive caching and neighbor clamping - Eurographics Symposium on Rendering 2006
[11]
Křivánek, J.- Radiance Caching for Global Illumination Computation on Glossy Surfaces - PhD thesis, Universite de Rennes 1 and Czech Technical University - 2005
[12]
Larson, G. W., Shakespeare, R. - Rendering with Radiance, The Art and Science of Lighting Visualization - Morgan Kaufmann Publishers - 1998
[13]
Smyk, M., Ichi Kinuwaki, S., Durikovic, R., Myszkowski, K. 2005. Temporally coherent irradiance caching for high quality animation rendering - Proceedings of Eurographics 2005, 24, 3.
[14]
Tabellion, E., And Lamorlette, A. - An approximate global illumination system for computer generated films - Proceedings of ACM SIGGRAPH 2004, 23, 3, 469--476
[15]
Ward, G. J., Heckbert, P. S. - Irradiance gradients - Proceedings of Eurographics Workshop on Rendering 1992, 85--98
[16]
Ward, G. J., Rubinstein, F. M., Clear, R. D. - A ray tracing solution for diffuse interreflection - Proceedings of ACM SIGGRAPH 1988, 85--92.
[17]
Ward, G. J. - The Radiance lighting simulation and rendering system - Proceedings of ACM SIGGRAPH 1994, 459--472.
[18]
Anisimov, O., and Fukshansky, L. 1992. Stochastic radiation in macroheterogeneous random optical media. Journal of Quantitative Spectroscopy and Radiative Transfer 48, 2, 169--186.
[19]
Arvo, J., and Kirk, D. 1990. Particle transport and image synthesis. ACM SIGGRAPH Computer Graphics 24, 4, 63--66.
[20]
Audic, S., and Frisch, H. 1993. Monte-Carlo simulation of a radiative transfer problem in a random medium: Application to a binary mixture. Journal of Quantitative Spectroscopy and Radiative Transfer 50, 2, 127--147.
[21]
Bhan, K., and Spanier, J. 2007. Condensed history monte carlo methods for photon transport problems. Journal of computational physics 225, 2, 1673--1694.
[22]
Bitterli, B., Ravichandran, S., Müller, T., Wrenninge, M., Novák, J., Marschner, S., and Jarosz, W. 2018. A radiative transfer framework for non-exponential media. ACM Transactions on Graphics 37, 6.
[23]
Borshukov, G., and Lewis, J. P. 2003. Realistic human face rendering for "The Matrix Reloaded". In ACM SIGGRAPH Sketches and Applications, ACM, 1.
[24]
Burrus, W. 1958. How channeling between chunks raises neutron transmission through boral. Nucleonics (US) Ceased publication 16.
[25]
Burrus, W. 1960. Radiation transmission through boral and similar heterogeneous materials consisting of randomly distributed absorbing chunks. Tech. rep., Oak Ridge National Lab., Tenn.
[26]
Case, K. 1960. Elementary solutions of the transport equation and their applications*. Annals of Physics 9, 1, 1--23.
[27]
Chandrasekhar, S. 1960. Radiative Transfer. Dover.
[28]
Chiang, M. J.-Y., Kutz, P., and Burley, B. 2016. Practical and controllable sub-surface scattering for production path tracing. In ACM SIGGRAPH 2016 Talks. 1--2.
[29]
Christensen, P., Fong, J., Shade, J., Wooten, W., Schubert, B., Kensler, A., Friedman, S., Kilpatrick, C., Ramshaw, C., Bannister, M., Rayner, B., Brouillat, J., and Liani, M. 2018. Renderman: An advanced path-tracing architecture for movie rendering. ACM Trans. Graph. 37, 3 (Aug.).
[30]
Christensen, P. H. 2003. Adjoints and importance in rendering: An overview. IEEE Transactions on Visualization and Computer Graphics 9, 3, 329--340.
[31]
Christensen, P. H. 2015. An approximate reflectance profile for efficient subsurface scattering. In ACM SIGGRAPH 2015 Talks. 1--1.
[32]
Coveyou, R., Cain, V., and Yost, K. 1967. Adjoint and Importance in Monte Carlo Application. Nucl. Sci. Eng. 27, 1, 219--234.
[33]
Davis, A. B., and Mineev-Weinstein, M. B. 2011. Radiation propagation in random media: From positive to negative correlations in high-frequency fluctuations. Journal of Quantitative Spectroscopy and Radiative Transfer 112, 4, 632--645.
[34]
Davis, A. B., and Xu, F. 2014. A generalized linear transport model for spatially correlated stochastic media. Journal of Computational and Theoretical Transport 43, 1-7, 474--514.
[35]
Davis, A. B. 2006. Effective propagation kernels in structured media with broad spatial correlations, illustration with large-scale transport of solar photons through cloudy atmospheres. In Computational Methods in Transport. Springer, 85--140.
[36]
Davison, B. 2000. Angular distribution due to an isotropic point source and spherically symmetrical eigensolutions of the transport equation (MT-112). Progress in Nuclear Energy 36, 3, 323 -- 365. Nuclear Reactor Theory in Canada 1943-1946.
[37]
Deng, H., Wang, B., Wang, R., and Holzschuch, N. 2020. A practical path guiding method for participating media. Computational Visual Media, 1--15.
[38]
D'Eon, E., and Irving, G. 2011. A quantized-diffusion model for rendering translucent materials. In ACM Transactions on Graphics (TOG), vol. 30, ACM, 56.
[39]
d'Eon, E., and McCormick, N. J. 2019. Radiative transfer in half spaces of arbitrary dimension. Journal of Computational and Theoretical Transport 48, 7, 280--337.
[40]
d'Eon, E., Luebke, D., and Enderton, E. 2007. Efficient rendering of human skin. In Rendering Techniques, 147--157.
[41]
d'Eon, E. 2013. Rigorous Asymptotic and Moment-Preserving Diffusion Approximations for Generalized Linear Boltzmann Transport in Arbitrary Dimension. Transport Theory and Statistical Physics 42, 6-7, 237--297.
[42]
d'Eon, E. 2014. A Dual-beam 3D Searchlight BSSRDF. ACM SIGGRAPH 2014 Talks 65, 1, 1.
[43]
d'Eon, E. 2016. A Hitchhiker's Guide to Multiple Scattering. (self published). http://eugenedeon.com/hitchhikers.
[44]
d'Eon, E. 2018. A reciprocal formulation of nonexponential radiative transfer. 1: Sketch and motivation. Journal of Computational and Theoretical Transport.
[45]
d'Eon, E. 2019. A reciprocal formulation of nonexponential radiative transfer. 2: Monte-Carlo Estimation and Diffusion Approximation. Journal of Computational and Theoretical Transport 48, 6, 201--262.
[46]
d'Eon, E. 2019. The Albedo Problem in Nonexponential Radiative Transfer. In International Conference on Transport Theory (ICTT-26) - Abstracts. https://www.researchgate.net/publication/333325137.
[47]
Donner, C., and Jensen, H. W. 2005. Light Diffusion in Multi-Layered Translucent Materials. ACM Trans. Graphic. 24, 3, 1032--1039.
[48]
Donner, C., Weyrich, T., d'Eon, E., Ramamoorthi, R., and Rusinkiewicz, S. 2008. A layered, heterogeneous reflectance model for acquiring and rendering human skin. In SIGGRAPH Asia '08: ACM SIGGRAPH Asia 2008 papers, ACM, New York, NY, USA, 1--12.
[49]
Dupuy, J., Heitz, E., and d'Eon, E. 2016. Additional progress towards the unification of microfacet and microflake theories. In EGSR (EI&I), 55--63.
[50]
Dutka, J. 1985. On the problem of random flights. Archive for history of exact sciences 32, 3, 351--375.
[51]
Dwivedi, S., and Gupta, H. 1986. Biasing parameter limits for synergistic monte carlo in deep-penetration calculations. Nuclear Science and Engineering 92, 4, 545--549.
[52]
Dwivedi, S. 1982. A new importance biasing scheme for deep-penetration Monte Carlo. Annals of Nuclear Energy 9, 7, 359--368.
[53]
Fascione, L., Hanika, J., Leone, M., Droske, M., Schwarzhaupt, J., Davidovič, T., Weidlich, A., and Meng, J. 2018. Manuka: A batch-shading architecture for spectral path tracing in movie production. ACM Transactions on Graphics (TOG) 37, 3, 1--18.
[54]
Feller, W. 1971. An Introduction to Probability theory and its application Vol II. John Wiley and Sons.
[55]
Fleck, J., and Canfield, E. 1984. A random walk procedure for improving the computational efficiency of the implicit monte carlo method for nonlinear radiation transport. Journal of Computational Physics 54, 3, 508--523.
[56]
Frederickx, R., and Dutré, P. 2017. A forward scattering dipole model from a functional integral approximation. ACM Transactions on Graphics (TOG) 36, 4, 109.
[57]
Frisch, U. 1968. Wave propagation in random media. In Probabilistic methods in applied mathematics, A. Bharucha-Reid, Ed. Academic Press, 75--198.
[58]
Frisvad, J. R., Christensen, N. J., and Jensen, H. W. 2007. Computing the Scattering Properties of Participating Media using Lorenz-Mie Theory. In ACM SIGGRAPH 2007 Papers, Association for Computing Machinery, New York, NY, USA, SIGGRAPH '07, 60--es.
[59]
Frisvad, J. R., Hachisuka, T., and Kjeldsen, T. K. 2014. Directional dipole model for subsurface scattering. ACM Transactions on Graphics (TOG) 34, 1, 1--12.
[60]
Fukshansky, L. 1987. Absorption statistics in turbid media. Journal of quantitative spectroscopy and radiative transfer 38, 5, 389--406.
[61]
Georgiev, I., Ize, T., Farnsworth, M., Montoya-Vozmediano, R., King, A., Lommel, B. V., Jimenez, A., Anson, O., Ogaki, S., Johnston, E., Herubel, A., Russell, D., Servant, F., and Fajardo, M. 2018. Arnold: A brute-force production path tracer. ACM Trans. Graph. 37, 3 (Aug.).
[62]
Grosjean, C. 1951. The Exact Mathematical Theory of Multiple Scattering of Particles in an Infinite Medium. Memoirs Kon. Vl. Ac. Wetensch. 13, 36.
[63]
Guo, Y., Hašan, M., and Zhao, S. 2018. Position-free monte carlo simulation for arbitrary layered bsdfs. ACM Transactions on Graphics (TOG) 37, 6, 1--14.
[64]
Habel, R., Christensen, P. H., and Jarosz, W. 2013. Photon beam diffusion: a hybrid monte carlo method for subsurface scattering. In Computer Graphics Forum, vol. 32, Wiley Online Library, 27--37.
[65]
Haghighat, A., and Wagner, J. C. 2003. Monte carlo variance reduction with deterministic importance functions. Progress in Nuclear Energy 42, 1, 25--53.
[66]
Hanrahan, P., and Krueger, W. 1993. Reflection from layered surfaces due to subsurface scattering. In Proceedings of ACM SIGGRAPH 1993, 164--174.
[67]
Harel, R., Burov, S., and Heizler, S. I. 2020. The time-dependent asymptotic p_n approximation for the transport equation. arXiv preprint arXiv:2006.11784. https://arxiv.org/abs/2006.11784v1.
[68]
Heitz, E., Hanika, J., d'Eon, E., and Dachsbacher, C. 2016. Multiple-scattering microfacet BSDFs with the Smith model. ACM Transactions on Graphics (TOG) 35, 4, 58.
[69]
Hoffman, W. 1964. Wave propagation in a general random continuous medium. Proc. Symp. Appl. Math. 16, 117--144.
[70]
Hoogenboom, J. 1981. A practical adjoint monte carlo technique for fixed-source and eigenfunction neutron transport problems. Nuclear Science and Engineering 79, 4, 357--373.
[71]
Hoogenboom, E. 2008. Zero-variance monte carlo schemes revisited. Nucl. Sci. Eng. 160, 1, 1--22.
[72]
Hoogenboom, J. 2008. The Two-Direction Neutral-Particle Transport Model: A Useful Tool for Research and Education. Transport Theory and Statistical Physics 37, 1, 65--108.
[73]
Ishimaru, A. 1978. Wave Propagation and Scattering in Random Media. Oxford University Press.
[74]
Ivanov, V. 1994. Resolvent method: exact solutions of half-space transport problems by elementary means. Astronomy and Astrophysics 286, 328--337.
[75]
Jarabo, A., Aliaga, C., and Gutierrez, D. 2018. A radiative transfer framework for spatially-correlated materials. ACM Transactions on Graphics 37, 4, 14.
[76]
Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of ACM SIGGRAPH 2001, 511--518.
[77]
Kahn, H. 1956. Applications of monte carlo.
[78]
Kirk, J. 1975. A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters i. general treatment of suspensions of pigmented cells. New phytologist 75, 1, 11--20.
[79]
Kulla, C., Conty, A., Stein, C., and Gritz, L. 2018. Sony pictures imageworks arnold. ACM Trans. Graph. 37, 3 (Aug.).
[80]
Křivánek, J., and d'Eon, E. 2014. A Zero-variance-based sampling scheme for Monte Carlo sub-surface scattering. ACM SIGGRAPH 2014 Talks 66, 1, 1.
[81]
Lafortune, E. P., and Willems, Y. D. 1996. Rendering participating media with bidirectional path tracing. In Rendering Techniques, 91--100.
[82]
Lanore, J.-M. 1971. Weighting and Biasing of a Monte Carlo Calculation for Very Deep Penetration of Radiation. Nucl. Sci. Eng. 45, 1, 66--72.
[83]
Larmier, C., Hugot, F.-X., Malvagi, F., Mazzolo, A., and Zoia, A. 2017. Benchmark solutions for transport in d-dimensional Markov binary mixtures. Journal of Quantitative Spectroscopy and Radiative Transfer 189, 133--148.
[84]
Larsen, E. W., and Vasques, R. 2011. A generalized linear Boltzmann equation for non-classical particle transport. Journal of Quantitative Spectroscopy and Radiative Transfer 112, 4, 619--631.
[85]
Liemert, A., and Kienle, A. 2013. Exact and efficient solution of the radiative transport equation for the semi-infinite medium. Scientific Reports 3.
[86]
Liemert, A., and Kienle, A. 2018. Fractional radiative transport in the diffusion approximation. Journal of Mathematical Chemistry 56, 2, 317--335.
[87]
Machida, M., Panasyuk, G., Schotland, J., and Markel, V. 2010. The green's function for the radiative transport equation in the slab geometry. Journal of Physics A: Mathematical and Theoretical 43, 065402.
[88]
Marchuk, G. I., Mikhailov, G. A., Nazareliev, M., Darbinjan, R. A., Kargin, B. A., and Elepov, B. S. 2013. The Monte Carlo methods in atmospheric optics, vol. 12. Springer.
[89]
McCormick, N., and Kuščer, I. 1973. Singular eigenfunction expansions in neutron transport theory. In Advances in Nuclear Science and Technology, Academic Press, E. J. Henley and J. Lewins, Eds., vol. 7, 181--282.
[90]
Medvedev, I., and Mikhailov, G. 2008. A new criterion for finiteness of weight estimator variance in statistical simulation. In Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, 561--576.
[91]
Meng, J., Hanika, J., and Dachsbacher, C. 2016. Improving the dwivedi sampling scheme. In Computer Graphics Forum, vol. 35, Wiley Online Library, 37--44.
[92]
Moon, J., Walter, B., and Marschner, S. 2007. Rendering discrete random media using precomputed scattering solutions. Rendering Techniques 2007, 231--242.
[93]
Müller, T., Papas, M., Gross, M., Jarosz, W., and Novák, J. 2016. Efficient rendering of heterogeneous polydisperse granular media. ACM Transactions on Graphics (TOG) 35, 6, 1--14.
[94]
Munk, M., and Slaybaugh, R. N. 2019. Review of hybrid methods for deep-penetration neutron transport. Nuclear Science and Engineering, 1--35.
[95]
Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1977. Geometrical Considerations and Nomenclature for Reflectance. National Bureau of Standards.
[96]
Novák, J., Georgiev, I., Hanika, J., and Jarosz, W. 2018. Monte carlo methods for volumetric light transport simulation. In Computer Graphics Forum, vol. 37, Wiley Online Library, 551--576.
[97]
Pharr, M., Jakob, W., and Humphreys, G. 2016. Physically based rendering: From theory to implementation. Morgan Kaufmann.
[98]
Picard, É. 1911. Sur un exemple simple d'une équation singulière de fredholm où la nature analytique de la solution dépend du second membre. In Annales scientifiques de l'École Normale Supérieure, vol. 28, 313--324. https://eudml.org/doc/81303.
[99]
Raab, M., Seibert, D., and Keller, A. 2008. Unbiased global illumination with participating media. In Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, 591--605.
[100]
Rabinowitch, E. I. 1951. Photosynthesis and related processes, vol. 72. LWW.
[101]
Randall, C. H. 1962. Stochastic modles for heterogeneous materials. I.(Large scale inhomogeneities and neutron transmission. Tech. Rep. KAPL-M-CHR-6, Knolls Atomic Power Lab., Schenectady, NY.
[102]
Randall, C. 1964. Generalized treatment of particle self-shielding. In The Naval Reactors Handbook Vol. 1: Selected Basic Techniques, A. Radkowsky, Ed. United States Atomic Energy Comission, 553.
[103]
Siewert, C. 1980. On computing eigenvalues in radiative transfer. Journal of Mathematical Physics 21, 9, 2468--2470.
[104]
Spanier, J., and Gelbard, E. 1969. Monte Carlo principles and neutron transport problems. Addison-Wesley Pub. Co.
[105]
Torquato, S. 2016. Hyperuniformity and its generalizations. Physical Review E 94, 2, 022122.
[106]
Tunaley, J. 1974. Theory of ac conductivity based on random walks. Physical Review Letters 33, 17, 1037.
[107]
Tunaley, J. 1976. Moments of the montroll-weiss continuous-time random walk for arbitrary starting time. Journal of Statistical Physics 14, 5, 461--463.
[108]
Turner, S. A., and Larsen, E. W. 1997. Automatic variance reduction for three-dimensional Monte Carlo simulations by the local importance function transform-1: Analysis. Nucl. Sci. Eng. 127, 1.
[109]
Ueki, T., and Larsen, E. W. 1998. A kinetic theory for nonanalog monte carlo particle transport algorithms: Exponential transform with angular biasing in planar-geometry anisotropically scattering media. Journal of Computational Physics 145, 1, 406--431.
[110]
Vicini, D., Koltun, V., and Jakob, W. 2019. A learned shape-adaptive sub-surface scattering model. ACM Transactions on Graphics (TOG) 38, 4, 1--15.
[111]
Weiss, G. H. 1983. Random walks and their applications: Widely used as mathematical models, random walks play an important role in several areas of physics, chemistry, and biology. American Scientist 71, 1, 65--71. https://www.jstor.org/stable/27851819.
[112]
Williams, M. 1991. Generalized contributon response theory. Nucl. Sci. Eng. 108, 355--383.
[113]
Williams, M. M. R. 2007. The searchlight problem in radiative transfer with internal reflection. Journal of Physics A: Mathematical and Theoretical 40, 24, 6407.
[114]
Wing, G. 1962. An introduction to transport theory. Wiley.
[115]
Winslow, A. M. 1968. Extensions of asymptotic neutron diffusion theory. Nuclear Sci. and Eng. 32, 101--110.
[116]
Wrenninge, M., Villemin, R., and Hery, C. 2017. Path traced subsurface scattering using anisotropic phase functions and non-exponential free flights. Tech. Rep. 17-07, Pixar. https://graphics.pixar.com/library/PathTracedSubsurface.
[117]
Xu, Q., Sun, J., Wei, Z., Shu, Y., Messelodi, S., and Cai, J. 2001. Zero variance importance sampling driven potential tracing algorithm for global ilumination.
[118]
Xu, Q., Wang, W., and Bao, S. 2006. A new computational way to monte carlo global illumination. International Journal of Image and Graphics 6, 01, 23--34.
[119]
Zhao, S., Ramamoorthi, R., and Bala, K. 2014. High-order similarity relations in radiative transfer. ACM Transactions on Graphics (TOG) 33, 4, 104.
[120]
Zoia, A., Dumonteil, E., and Mazzolo, A. 2011. Collision densities and mean residence times for d-dimensional exponential flights. Physical Review E 83, 4, 041137.
[121]
[Bishop 2006] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer-Verlag New York Inc.
[122]
[Boughida and Boubekeur 2017] Malik Boughida and Tamy Boubekeur. 2017. Bayesian collaborative denoising for Monte Carlo rendering. Computer Graphics Forum 36, 4 (2017), 137--153.
[123]
[Brouillat et al. 2009] Jonathan Brouillat, Christian Bouville, Brad Loos, Charles Hansen, and Kadi Bouatouch. 2009. A Bayesian Monte Carlo approach to global illumination. Computer Graphics Forum 28, 8 (2009), 2315--2329.
[124]
[Cappé et al. 2004] Olivier Cappé, Arnaud Guillin, Jean-Michel Marin, and Christian P. Robert. 2004. Population Monte Carlo. Journal of Computational and Graphical Statistics 13, 4 (2004), 907--929.
[125]
[Donikian et al. 2006] Michael Donikian, Bruce Walter, Kavita Bala, Sebastian Fernandez, and Donald P. Greenberg. 2006. Accurate direct illumination using iterative adaptive sampling. IEEE Transactions on Visualization and Computer Graphics 12, 3 (2006), 353--363.
[126]
[Dutré and Willems 1995] Philip Dutré and Yves D. Willems. 1995. Potential-driven Monte Carlo Particle Tracing for Diffuse Environments with Adaptive Probability Functions. Rendering Techniques 95 (1995).
[127]
[Jensen 1995] Henrik Wann Jensen. 1995. Importance driven path tracing using the photon map. Rendering Techniques 95 (1995), 326--335.
[128]
[Lafortune and Willems 1995] Eric P. Lafortune and Yves D. Willems. 1995. A 5D Tree to Reduce the Variance of Monte Carlo Ray Tracing. Rendering Techniques 95 (1995), 11--20.
[129]
[Lepage 1980] Peter G. Lepage. 1980. VEGAS - an adaptive multi-dimensional integration program. CLNS-447 (1980), 30 pages.
[130]
[Marques et al. 2013] Ricardo Marques, Christian Bouville, Mickaël Ribardiere, Luís Paulo Santos, and Kadi Bouatouch. 2013. A spherical gaussian framework for Bayesian Monte Carlo rendering of glossy surfaces. IEEE Trans. Vis. Comput. Graph. 19, 10 (2013), 1619--1632.
[131]
[Mitchell 1987] Don P. Mitchell. 1987. Generating Antialiased Images at Low Sampling Densities. Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (1987).
[132]
[Müller et al. 2017] Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient Light-Transport Simulation. Eurographics Symposium on Rendering 36, 4 (2017).
[133]
[Shirley et al. 1996] Peter Shirley, Changyaw Wang, and Kurt Zimmerman. 1996. Monte Carlo techniques for direct lighting calculations. ACM Transactions on Graphics 15, 1 (1996), 1--36.
[134]
[Vévoda et al. 2018] Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek. 2018. Bayesian Online Regression for Adaptive Direct Illumination Sampling. ACM Transactions on Graphics 37, 4 (2018).
[135]
[Vorba et al. 2014] Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-line Learning of Parametric Mixture Models for Light Transport Simulation. ACM Transactions on Graphics 33, 4 (2014), 101:1--101:11.
[136]
[Walter et al. 2005] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and Donald P Greenberg. 2005. Lightcuts: a scalable approach to illumination. ACM Transactions on Graphics 24, 3 (2005), 1098--1107.
[137]
[Wang and Akerlund 2009] Rui Wang and Oskar Akerlund. 2009. Bidirectional Importance Sampling for Unstructured Direct Illumination. Computer Graphics Forum 28, 2 (2009), 269--278.
[138]
[Elvira et al. 2015] Victor Elvira, Luca Martino, David Luengo, and Mónica F. Bugallo. 2015. Generalized multiple importance sampling. arXiv:1511.03095.
[139]
[Elvira et al. 2016] Victor Elvira, Luca Martino, David Luengo, and Mónica F. Bugallo. 2016. Heretical multiple importance sampling. IEEE Signal Processing Letters 23, 10 (Oct 2016).
[140]
[Georgiev et al. 2012] Iliyan Georgiev, Jaroslav Křivánek, Stefan Popov, and Philipp Slusallek. 2012b. Importance Caching for Complex Illumination. Comput. Graph. Forum (EUROGRAPHICS 2012) 31, 2pt3 (May 2012), 701--710.
[141]
[Grittmann et al. 2019] Pascal Grittmann, Iliyan Georgiev, Philipp Slusallek, Jaroslav Křivánek. Variance-Aware Multiple Importance Sampling. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2019), 38(6): 152:1--152:9, 2019.
[142]
[Havran and Sbert 2014] Vlastimil Havran and Mateu Sbert. 2014. Optimal Combination of Techniques in Multiple Importance Sampling. In Proc. VRCAI '14. ACM, New York, NY, 141--150.
[143]
[Jensen 1995] Henrik Wann Jensen. 1995. Importance Driven Path Tracing using the Photon Map. In Rendering Techniques.
[144]
[Karlík et al. 2019] Ondřej Karlík, Martin Šik, Petr Vévoda, Tomáš Skřivan, Jaroslav Krivanek. MIS compensation: optimizing sampling techniques in multiple importance sampling. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2019), 38(6): 151:1--151:12, 2019.
[145]
[Kondapaneni et al. 2019] Ivo Kondapaneni, Petr Vévoda, Pascal Grittmann, Tomáš Skřivan, Philipp Slusallek, Jaroslav Křivánek. Optimal Multiple Importance Sampling. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2019), 38(4): 37:1--37:14, 2019.
[146]
[Lafortune and Willems 1993] Eric P Lafortune and Yves D Willems. 1993. Bi-directional Path Tracing.
[147]
[Lu et al. 2013] H. Lu, R. Pacanowski, and X. Granier. 2013. Second-Order Approximation for Variance Reduction in Multiple Importance Sampling. Comput. Graph. Forum (EGSR 2013) 32, 7 (2013), 131--136.
[148]
[Müller et al. 2017] Thomas Müller, Markus H. Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient Light-Transport Simulation. Comput. Graph. Forum 36 (2017), 91--100.
[149]
[Owen and Zhou 2000] Art Owen and Yi Zhou. 2000. Safe and Effective Importance Sampling. J. Amer. Statist. Assoc. 95, 449 (2000), 135--143.
[150]
[Pajot et al. 2011] Anthony Pajot, Loic Barthe, Mathias Paulin, and Pierre Poulin. 2011. Representativity for Robust and Adaptive Multiple Importance Sampling. IEEE Transactions on Visualization and Computer Graphics 17, 8 (Aug. 2011), 1108--1121.
[151]
[Sbert et al. 2016] Mateu Sbert, Vlastimil Havran, and Laszlo Szirmay-Kalos. 2016. Variance Analysis of Multi-sample and One-sample Multiple Importance Sampling. Computer Graphics Forum 35, 7 (2016), 451--460.
[152]
[Sbert and Havran 2017] Mateu Sbert and Vlastimil Havran. 2017. Adaptive Multiple Importance Sampling for General Functions. Vis. Comput. 33, 6-8 (June 2017), 845--855.
[153]
[Veach and Guibas 1995] Eric Veach, Leonidas Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering. SIGGRAPH 1995.
[154]
[Veach and Guibas 1995a] Eric Veach and Leonidas Guibas. 1995. Bidirectional Estimators for Light Transport. In Photorealistic Rendering Techniques. Springer, 145--167.
[155]
[Vorba et al. 2014] Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-line Learning of Parametric Mixture Models for Light Transport Simulation. ACM Trans. Graph. (Proceedings of SIGGRAPH 2014) 33, 4 (2014).
[156]
[Baragatti et al. 2012] Meili Baragatti, Agnés Grimaud, and Denys Pommeret. Parallel tempering with equi-energy moves. Statistics and Computing, 23(3), 2012. ISSN 1573--1375.
[157]
[Haario et al. 2001] Heikki Haario, Eero Saksman, and Johanna Tamminen. An adaptive Metropolis algorithm. Bernoulli, 7(2):223--242, 04 2001.
[158]
[Hachisuka and Jensen 2009] Toshiya Hachisuka and Henrik W. Jensen. Stochastic progressive photon mapping. ACM Transactions on Graphics (SIGGRAPH Asia 2009), 28(5):141:1--141:8, 2009.
[159]
[Hachisuka and Jensen 2011] Toshiya Hachisuka and Henrik W. Jensen. Robust adaptive photon tracing using photon path visibility. ACM Transactions on Graphics, 30(5):114:1--114:11,2011. ISSN 0730--0301.
[160]
[Hachisuka et al. 2012] Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik W. Jensen. A path space extension for robust light transport simulation. ACM Transactions on Graphics (SIGGRAPH Asia '12), 31(6):191:1--191:10, 2012. ISSN 0730--0301.
[161]
[Hachisuka et al. 2014] Toshiya Hachisuka, Anton S. Kaplanyan, and Carsten Dachsbacher. Multiplexed Metropolis light transport. ACM Transactions on Graphics, 33(4): 100:1--100:10, July 2014. ISSN 0730--0301.
[162]
[Hastings 1970] Wilfred K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97--109, 1970. ISSN 00063444.
[163]
[Geoergiev et al. 2012] Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. Light transport simulation with vertex connection and merging. ACM Transactions on Graphics (SIGGRAPH Asia '12), 31(6):192:1--192:10, 2012. ISSN 0730--0301.
[164]
[Grittmann et al. 2018] Pascal Grittmann and Arséne Pérard-Gayot and Philipp Slusallek and Jaroslav Křivánek. Efficient Caustic Rendering with Lightweight Photon Mapping. Computer Graphics Forum (Proceedings of the 29th Eurographics Symposium on Rendering), 2018.
[165]
[Gruson et al. 2016] Adrien Gruson, Mickael Ribardiere, Martin Šik, Jiří Vorba, Rémy Cozot, Kadi Bouatouch, and Jaroslav Křivánek. A Spatial Target Function for Metropolis Photon Tracing. ACM Trans. Graph. 2016.
[166]
[Gruson et al. 2020] Adrien Gruson, Rex West, and Toshiya Hachisuka. Stratified Markov chain Monte Carlo Light Transport, Eurographics, 2020.
[167]
[Jakob and Marschner 2012] Wenzel Jakob and Steve Marschner. Manifold exploration: A Markov chain Monte Carlo technique for rendering scenes with difficult specular transport. ACM Transactions on Graphics, 31(4):58:1--58:13, 2012. ISSN 0730--0301.
[168]
[Kaplanyan et al. 2014] Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. The natural constraint representation of the path space for efficient light transport simulation. ACM Transactions on Graphics, 33(4):102:1--102:13, July 2014. ISSN 0730--0301.
[169]
[Kelemen et al. 2002] Csaba Kelemen, László Szirmay-Kalos, Gyorgy Antal, and Ferenc Csonka. A simple and robust mutation strategy for the Metropolis light transport algorithm. Computer Graphics Forum (Eurographics), 21(3):531--540, 2002. ISSN 1467--8659.
[170]
[Kitaoka et al. 2009] Shinya Kitaoka, Yoshifumi Kitamura, and Fumio Kishino. Replica exchange light transport. Computer Graphics Forum, 28(8):2330--2342, 2009. ISSN 1467--8659.
[171]
[Kou et al. 2006] S. C. Kou, Qing Zhou, and Wing H. Wong. Equi-energy sampler with applications in statistical inference and statistical mechanics. The Annals of Statistics, 34(4):1581--1619, 08 2006.
[172]
[Kulla et al. 2018] Christopher Kulla, Alejandro Conty, Clifford Stein, and Larry Israel. ACM Transactions on Graphics August 2018, 29, 2018.
[173]
[Li et al. 2015] Tzu-Mao Li, Jaakko Lehtinen, Ravi Ramamoorthi, Wenzel Jakob, and Frédo Durand. Anisotropic Gaussian mutations for Metropolis light transport through Hessian-Hamiltonian dynamics. ACM Transactions on Graphics (SIGGRAPH Asia 2015), 34(6):209:1--209:13, 2015.
[174]
[Luan et al. 2020] Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas. Langevin Monte Carlo Rendering with Gradient-based Adaptation. In ACM Transactions on Graphics (To be presented at SIGGRAPH), 2020.
[175]
[Metropolis et al. 1953] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087--1092, 1953.
[176]
[Rioux-Lavoie et al. 2020] Damien Rioux-Lavoie, Joey Litalien, Adrien Gruson, Toshiya Hachisuka, and Derek Nowrouzezahrai. Delayed Rejection Metropolis Light Transport. In ACM Transactions on Graphics (To be presented at SIGGRAPH), 2020.
[177]
[Swendsen and Wang 1986] Robert H. Swendsen and Jian-Sheng Wang. Replica Monte Carlo simulation of spin-glasses. Physical Review Letters, 57:2607--2609, 1986.
[178]
[Šik 2018] Martin Šik. Global exploration in Markov chain Monte Carlo methods for light transport simulation, Doctoral thesis, 2018.
[179]
[Šik and Křivánek 2016] Martin Šik and Jaroslav Křivánek. Improving Global Exploration of MCMC Light Transport Simulation. ACM SIGGRAPH 2016 Posters.
[180]
[Šik and Křivánek 2018] Martin Šik and Jaroslav Křivánek. Survey of Markov Chain Monte Carlo Methods in Light Transport Simulation. IEEE Transactions on Visualization and Computer Graphics, 2018.
[181]
[Šik and Křivánek 2019] Martin Šik and Jaroslav Křivánek. Implementing One-Click Caustics in Corona Renderer. Eurographics Symposium on Rendering - Industry Track, 2019.
[182]
[Šik et al. 2016] Martin Šik, Hisanari Otsu, Toshiya Hachisuka, and Jaroslav Křivánek. Robust Light Transport Simulation via Metropolised Bidirectional Estimators. ACM Trans. Graph., SIGGRAPH Asia 2016.
[183]
[Veach and Guibas 1994] Eric Veach and Leonidas Guibas. Bidirectional estimators for light transport. In Proc. Eurographics Rendering Workshop, pages 147--162, 1994.
[184]
[Veach and Guibas 1997] Eric Veach and Leonidas J. Guibas. Metropolis light transport. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '97, pages 65--76, 1997. ISBN 0-89791-896-7.
[185]
(BFK18) Nikolaus Binder, Sascha Fricke, and Alexander Keller. Fast path space filtering by jittered spatial hashing. In ACM SIGGRAPH 2018 Talks, New York, NY, USA, 2018. Association for Computing Machinery.
[186]
(BRDC12) Thomas Bashford-Rogers, Kurt Debattista, and Alan Chalmers. A significance cache for accelerating global illumination. Comput. Graph. Forum, 31(6):1837--1851, 2012.
[187]
(DGJ+20) Stavros Diolatzis, Adrien Gruson, Wenzel Jakob, Derek Nowrouzezahrai, and George Drettakis. Practical Product Path Guiding Using Linearly Transformed Cosines. Computer Graphics Forum, 39(4), July 2020.
[188]
(DK18) Ken Dahm and Alexander Keller. Learning light transport the reinforced way. In A. Owen and P. Glynn, editors, Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2016. Proceedings in Mathematics & Statistics, volume 241, pages 181--195. Springer, 2018.
[189]
(DWWH20) Hong Deng, Beibei Wang, Rui Wang, and Nicolas Holzschuch. A Practical Path Guiding Method for Participating Media. Computational Visual Media, 6, 2020.
[190]
(FHH+19) Luca Fascione, Johannes Hanika, Daniel Heckenberg, Christopher Kulla, Mark Droske, and Jorge Schwarzhaupt. Path tracing in production - part1. In SIGGRAPH Courses, 2019.
[191]
(GGSK19) Pascal Grittmann, Iliyan Georgiev, Philipp Slusallek, and Jaroslav Křivánek. Variance-aware multiple importance sampling. ACM Trans. Graph., 38(6), November 2019.
[192]
(GKDS12) Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidović, and Philipp Slusallek. Light transport simulation with vertex connection and merging. ACM Trans. Graph., 31(6), November 2012.
[193]
(GKH+13) Iliyan Georgiev, Jaroslav Křivánek, Toshiya Hachisuka, Derek Nowrouzezahrai, and Wojciech Jarosz. Joint importance sampling of low-order volumetric scattering. ACM Trans. Graph., 32(6), November 2013.
[194]
(GMH+19) Iliyan Georgiev, Zackary Misso, Toshiya Hachisuka, Derek Nowrouzezahrai, Jaroslav Křivánek, and Wojciech Jarosz. Integral formulations of volumetric transmittance. ACM Trans. Graph., 38(6), November 2019.
[195]
(GRŠ+16] Adrien Gruson, Mickaël Ribardière, Martin Šik, Jiří Vorba, Rémi Cozot, Kadi Bouatouch, and Jaroslav Křivánek. A spatial target function for metropolis photon tracing. ACM Trans. Graph., 36(1):4:1--4:13, November 2016.
[196]
(HEV+16) Sebastian Herholz, Oskar Elek, Jiří Vorba, Hendrik Lensch, and Jaroslav Křivánek. Product importance sampling for light transport path guiding. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering), 35(4):67--77, 2016.
[197]
(HP02) Heinrich Hey and Werner Purgathofer. Importance sampling with hemispherical particle footprints. In Proceedings of the 18th Spring Conference on Computer Graphics, pages 107--114, 2002.
[198]
(HPJ12) Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik W. Jensen. A path space extension for robust light transport simulation. ACM Transactions on Graphics (SIGGRAPH Asia '12), 31(6):191:1--191:10, 2012.
[199]
(HZE+19a) Sebastian Herholz, Yangyang Zhao, Oskar Elek, Derek Nowrouzezahrai, Hendrik P A. Lensch, and Jaroslav Křivánek. Volume path guiding based on zero-variance random walk theory. ACM Trans. Graph., 38(3), June 2019.
[200]
(HZE+19b) Sebastian Herholz, Yangyang Zhao, Oskar Elek, Derek Nowrouzezahrai, Hendrik P. A. Lensch, and Jaroslav Křivánek. Volume path guiding based on zero-variance random walk theory. ACM Trans. Graph., 38(3), June 2019.
[201]
(Jen95) Henrik Wann Jensen. Importance driven path tracing using the photon map. pages 326--335, 1995.
[202]
(Kd14) Jaroslav Křivánek and Eugene d'Eon. A zero-variance-based sampling scheme for monte carlo subsurface scattering. In ACM SIGGRAPH 2014 Talks, pages 1--1. 2014.
[203]
(KDB14) Alexander Keller, Ken Dahm, and Nikolaus Binder. Path space filtering. In ACM SIGGRAPH 2014 Talks, 2014.
[204]
(KGH+14) Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek Nowrouzezahrai, and Wojciech Jarosz. Unifying points, beams, and paths in volumetric light transport simulation. ACM Trans. Graph., 33(4), July 2014.
[205]
(KGPB05) Jaroslav Křivánek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch. Radiance caching for efficient global illumination computation. Visualization and Computer Graphics, IEEE Transactions on, 11(5):550--561, sept.-oct. 2005.
[206]
(KKG+14) Jaroslav Křivánek, Alexander Keller, Iliyan Georgiev, Anton Kaplanyan, Marcos Fajardo, Mark Meyer, Jean-Daniel Nahmias, Ondřej Karlík, and Juan Canada. Recent advances in light transport simulation: Some theory and a lot of practice. In ACM SIGGRAPH 2014 Courses, SIGGRAPH '14, pages 17:1--17:6, New York, NY, USA, 2014. ACM.
[207]
(KŠv+19) Ondřej Karlík, Martin Šik, Petr Vévoda, Tomáš Skřivan, and Jaroslav Křivánek. Mis compensation: Optimizing sampling techniques in multiple importance sampling. ACM Trans. Graph., 38(6), November 2019.
[208]
(KVG+19) Ivo Kondapaneni, Petr Vevoda, Pascal Grittmann, Tomáš Skřivan, Philipp Slusallek, and Jaroslav Křivánek. Optimal multiple importance sampling. ACM Trans. Graph., 38(4), July 2019.
[209]
(LW95) Eric P Lafortune and Yves D. Willems. A 5d tree to reduce the variance of monte carlo ray tracing. In Rendering Techniques '95 (Proc. of the 6th Eurographics Workshop on Rendering), pages 11--20, 1995.
[210]
(MGN17) Thomas Müller, Markus Gross, and Jan Novák. Practical path guiding for efficient light-transport simulation. 36(4):91--100, June 2017.
[211]
(MMR+19) Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. Neural importance sampling. ACM Trans. Graph., 38(5), October 2019.
[212]
(MRNK20) Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. Neural control variates, 2020.
[213]
(Pan20) Jacopo Pantaleoni. Online path sampling control with progressive spatio-temporal filtering, 2020.
[214]
(RGH+20) Alexander Rath, Pascal Grittmann, Sebastian Herholz, Petr Vévoda, Philipp Slusallek, and Jaroslav Křivánek. Variance-aware path guiding. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2020), 39(4), 2020.
[215]
(RHL20) Lukas Ruppert, Sebastian Herholz, and Hendrik P. A. Lensch. Robust fitting of parallax-aware mixtures for path guiding. ACM Trans. Graph., 39(4), 2020.
[216]
(SJHD18) Florian Simon, Alisa Jung, Johannes Hanika, and Carsten Dachsbacher. Selective guided sampling with complete light transport paths. Transactions on Graphics (Proceedings of SIGGRAPH Asia), 37(6), December 2018.
[217]
(ŠK16) Martin Šik and Jaroslav Křivának. Improving global exploration of MCMC light transport simulation. In ACM SIGGRAPH 2016 Posters, SIGGRAPH '16, pages 50:1--50:2, New York, NY, USA, 2016. ACM.
[218]
(ŠK19a) Martin Šik and Jaroslav Křivánek. Implementing one-click caustics in corona renderer. In Tamy Boubekeur and Pradeep Sen, editors, Eurographics Symposium on Rendering - DL-only and Industry Track, pages 61--67. The Eurographics Association, 2019.
[219]
(ŠK19b) Martin Šik and Jaroslav Křivánek. Survey of Markov chain Monte Carlo methods in light transport simulation. IEEE Transactions on Visualization and Computer Graphics, 2019.
[220]
(ŠOHK16) Martin Šik, Hisanari Otsu, Toshiya Hachisuka, and Jaroslav Křivánek. Robust light transport simulation via metropolised bidirectional estimators. ACM Trans. Graph., 35(6):245:1--245:12, November 2016.
[221]
(VHH+19) Jiří Vorba, Johannes Hanika, Sebastian Herholz, Thomas Müller, Jaroslav Křivánek, and Alexander Keller. Path guiding in production. In ACM SIGGRAPH 2019 Courses, SIGGRAPH '19, pages 18:1--18:77, New York, NY, USA, 2019. ACM.
[222]
(VK16) Jiří Vorba and Jaroslav Křivánek. Adjoint-driven russian roulette and splitting in light transport simulation. ACM Trans. Graph., 35(4), July 2016.
[223]
(VKK18) Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek. Bayesian online regression for adaptive direct illumination sampling. ACM Trans. Graph. (SIGGRAPH 2018), 37(4):125:1--125:12, July 2018.
[224]
(VKŠ+14) Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. On-line learning of parametric mixture models for light transport simulation. ACM Trans. on Graphics (Proc. SIGGRAPH), 33(4):101:1--101:11, August 2014.
[225]
(Vor11) Jiří Vorba. Bidirectional photon mapping. CESCG, 2011.
[226]
(We17) C.J. Werner (editor). MCNP users manual - code version 6.2. LA-UR-17-29981, 2017.

Cited By

View all
  • (2023)Optimal MIS weights in case of mixing 3 strategies for bidirectional MCRT with photon mapsMathematica Montisnigri10.20948/mathmontis-2023-57-557(65-83)Online publication date: 2023
  • (2023)State of the Art in Efficient Translucent Material Rendering with BSSRDFComputer Graphics Forum10.1111/cgf.1499843:1Online publication date: 22-Dec-2023
  • (2022)MetappearanceACM Transactions on Graphics10.1145/3550454.355545841:6(1-13)Online publication date: 30-Nov-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGGRAPH '20: ACM SIGGRAPH 2020 Courses
August 2020
3010 pages
ISBN:9781450379724
DOI:10.1145/3388769
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 August 2020

Check for updates

Qualifiers

  • Course

Conference

SIGGRAPH '20
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)29
  • Downloads (Last 6 weeks)2
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Optimal MIS weights in case of mixing 3 strategies for bidirectional MCRT with photon mapsMathematica Montisnigri10.20948/mathmontis-2023-57-557(65-83)Online publication date: 2023
  • (2023)State of the Art in Efficient Translucent Material Rendering with BSSRDFComputer Graphics Forum10.1111/cgf.1499843:1Online publication date: 22-Dec-2023
  • (2022)MetappearanceACM Transactions on Graphics10.1145/3550454.355545841:6(1-13)Online publication date: 30-Nov-2022
  • (2021)Spectral imaging in productionACM SIGGRAPH 2021 Courses10.1145/3450508.3464582(1-90)Online publication date: 9-Aug-2021

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media