skip to main content
research-article

Representative Sets and Irrelevant Vertices: New Tools for Kernelization

Published:02 June 2020Publication History
Skip Abstract Section

Abstract

We continue the development of matroid-based techniques for kernelization, initiated by the present authors [47]. We significantly extend the usefulness of matroid theory in kernelization by showing applications of a result on representative sets due to Lovász [51] and Marx [53]. As a first result, we show how representative sets can be used to derive a polynomial kernel for the elusive ALMOST 2-SAT problem (where the task is to remove at most k clauses to make a 2-CNF formula satisfiable), solving a major open problem in kernelization. This result also yields a new O(√log OPT)-approximation for the problem, improving on the O(√log n)-approximation of Agarwal et al. [3] and an implicit O(log OPT)-approximation due to Even et al. [24].

We further apply the representative sets tool to the problem of finding irrelevant vertices in graph cut problems, that is, vertices that can be made undeletable without affecting the answer to the problem. This gives the first significant progress towards a polynomial kernel for the MULTIWAY CUT problem; in particular, we get a kernel of O(ks+1) vertices for MULTIWAY CUT instances with at most s terminals. Both these kernelization results have significant spin-off effects, producing the first polynomial kernels for a range of related problems.

More generally, the irrelevant vertex results have implications for covering min cuts in graphs. For a directed graph G=(V,E) and sets S, TV, let r be the size of a minimum (S,T)-vertex cut (which may intersect S and T). We can find a set ZV of size O(|S| . |T| . r) that contains a minimum (A,B)-vertex cut for every AS, BT. Similarly, for an undirected graph G=(V,E), a set of terminals XV, and a constant s, we can find a set ZV of size O(|X|s+1) that contains a minimum multiway cut for every partition of X into at most s pairwise disjoint subsets. Both results are polynomial time. We expect this to have further applications; in particular, we get direct, reduction rule-based kernelizations for all problems above, in contrast to the indirect compression-based kernel previously given for ODD CYCLE TRANSVERSAL [47].

All our results are randomized, with failure probabilities that can be made exponentially small in n, due to needing a representation of a matroid to apply the representative sets tool.

References

  1. Faisal N. Abu-Khzam. 2010. A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci. 76, 7 (2010), 524--531.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Leonard M. Adleman. 1978. Two theorems on random polynomial time. In 19th Annual Symposium on Foundations of Computer Science (Ann Arbor, Michigan, 16-18 October 1978). IEEE Computer Society, 75--83. DOI:https://doi.org/10.1109/SFCS.1978.37Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. 2005. approximation algorithms for Min UnCut, Min 2CNF deletion, and directed cut problems. In STOC, Harold N. Gabow and Ronald Fagin (Eds.). ACM, 573--581.Google ScholarGoogle Scholar
  4. Sepehr Assadi, Sanjeev Khanna, Yang Li, and Val Tannen. 2015. Dynamic sketching for graph optimization problems with applications to cut-preserving sketches. In 35th IARCS Annual Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS'15), (December 16-18, 2015, Bangalore, India (LIPIcs)), Prahladh Harsha and G. Ramalingam (Eds.), Vol. 45. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 52--68. DOI:https://doi.org/10.4230/LIPIcs.FSTTCS.2015.52Google ScholarGoogle Scholar
  5. M. Balinski. 1970. On the maximum matching, minimum covering. In Proceedings of the Symposium on Mathematical Programming. Princeton University Press, 301--312.Google ScholarGoogle Scholar
  6. Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. 2009. On problems without polynomial kernels. J. Comput. Syst. Sci. 75, 8 (2009), 423--434.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and Dimitrios M. Thilikos. 2016. (Meta) Kernelization. J. ACM 63, 5 (2016), 44:1–44:69. http://dl.acm.org/citation.cfm?id=2973749Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hans L. Bodlaender, Fedor V. Fomin, and Saket Saurabh. 2010. Open Problems, WORKER 2010. Available at http://fpt.wikidot.com/open-problems.Google ScholarGoogle Scholar
  9. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. 2011. Cross-composition: A new technique for kernelization lower bounds. In STACS (LIPIcs), Thomas Schwentick and Christoph Dürr (Eds.), Vol. 9. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 165--176.Google ScholarGoogle Scholar
  10. Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. 2011. Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci. 412, 35 (2011), 4570--4578.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal Pilipczuk. 2016. Designing FPT algorithms for cut problems using randomized contractions. SIAM J. Comput. 45, 4 (2016), 1171--1229. DOI:https://doi.org/10.1137/15M1032077Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Maria Chudnovsky, Jim Geelen, Bert Gerards, Luis A. Goddyn, Michael Lohman, and Paul D. Seymour. 2006. Packing non-zero a-paths in group-labelled graphs. Combinatorica 26, 5 (2006), 521--532.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Julia Chuzhoy. 2012. On vertex sparsifiers with Steiner nodes. In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19-22, 2012, Howard J. Karloff and Toniann Pitassi (Eds.). ACM, 673--688. DOI:https://doi.org/10.1145/2213977.2214039Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. 2015. Parameterized Algorithms. Springer. DOI:https://doi.org/10.1007/978-3-319-21275-3Google ScholarGoogle Scholar
  15. Marek Cygan, Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Magnus Wahlström. 2014. Clique cover and graph separation: New incompressibility results. TOCT 6, 2 (2014), 6:1–6:19. DOI:https://doi.org/10.1145/2594439Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. 2016. On group feedback vertex set parameterized by the size of the cutset. Algorithmica 74, 2 (2016), 630--642. DOI:https://doi.org/10.1007/s00453-014-9966-5Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. 2013. On multiway cut parameterized above lower bounds. TOCT 5, 1 (2013), 3. DOI:https://doi.org/10.1145/2462896.2462899Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Holger Dell and Dániel Marx. 2012. Kernelization of packing problems. In 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'12), (Kyoto, Japan, January 17-19, 2012), Yuval Rabani (Ed.). SIAM, 68--81.Google ScholarGoogle ScholarCross RefCross Ref
  19. Holger Dell and Dieter van Melkebeek. 2014. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. J. ACM 61, 4 (2014), 23. DOI:https://doi.org/10.1145/2629620Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Bistra N. Dilkina, Carla P. Gomes, and Ashish Sabharwal. 2007. Tradeoffs in the complexity of backdoor detection. In CP (Lecture Notes in Computer Science), Christian Bessiere (Ed.), Vol. 4741. Springer, 256--270.Google ScholarGoogle Scholar
  21. Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized Complexity. Springer. DOI:https://doi.org/10.1007/978-1-4471-5559-1Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Andrew Drucker. 2015. New limits to classical and quantum instance compression. SIAM J. Comput. 44, 5 (2015), 1443--1479. DOI:https://doi.org/10.1137/130927115Google ScholarGoogle Scholar
  23. Paul Erdős and Richard Rado. 1960. Intersection theorems for systems of sets. Journal of the London Mathematical Society s1-35, 1 (1960), 85--90. DOI:https://doi.org/10.1112/jlms/s1-35.1.85 arXiv:http://jlms.oxfordjournals.org/content/s1-35/1/85.full.pdf+html.Google ScholarGoogle ScholarCross RefCross Ref
  24. Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. 2000. Divide-and-conquer approximation algorithms via spreading metrics. J. ACM 47, 4 (2000), 585--616. DOI:https://doi.org/10.1145/347476.347478Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Stefan Fafianie, Stefan Kratsch, and Vuong Anh Quyen. 2016. Preprocessing under uncertainty. In Proceedings of the 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016), Nicolas Ollinger and Heribert Vollmer (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 43:1–43:14. DOI:https://doi.org/10.4230/LIPIcs.STACS.2016.33Google ScholarGoogle Scholar
  26. Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. 2016. Bipartite perfect matching is in quasi-NC. In 48th Annual ACM SIGACT Symposium on Theory of Computing (STOC'16), (Cambridge, MA, June 18-21, 2016), Daniel Wichs and Yishay Mansour (Eds.). ACM, 754--763. DOI:https://doi.org/10.1145/2897518.2897564Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series). Springer.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. 2016. Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM 63, 4 (2016), 29:1–29:60. DOI:https://doi.org/10.1145/2886094Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. 2010. Bidimensionality and kernels. In 21st Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA 2010), (Austin, Texas, January 17-19, 2010). SIAM, 503--510. DOI:https://doi.org/10.1137/1.9781611973075.43Google ScholarGoogle Scholar
  30. Fedor V. Fomin, Saket Saurabh, and Yngve Villanger. 2013. A polynomial kernel for proper interval vertex deletion. SIAM J. Discrete Math. 27, 4 (2013), 1964--1976.Google ScholarGoogle ScholarCross RefCross Ref
  31. Lance Fortnow and Rahul Santhanam. 2011. Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. 77, 1 (2011), 91--106.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Shivam Garg and Geevarghese Philip. 2016. Raising the bar for vertex cover: Fixed-parameter tractability above a higher guarantee. In 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'16), (Arlington, VA, January 10-12, 2016), Robert Krauthgamer (Ed.). SIAM, 1152--1166. DOI:https://doi.org/10.1137/1.9781611974331.ch80Google ScholarGoogle ScholarCross RefCross Ref
  33. Georg Gottlob and Stefan Szeider. 2008. Fixed-parameter algorithms for artificial intelligence, constraint satisfaction and database problems. Comput. J. 51, 3 (2008), 303--325.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sylvain Guillemot. 2011. FPT algorithms for path-transversal and cycle-transversal problems. Disc. Optim. 8, 1 (2011), 61--71.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Jiong Guo, Hannes Moser, and Rolf Niedermeier. 2009. Iterative compression for exactly solving NP-hard minimization problems. In Algorithmics of Large and Complex Networks (Lecture Notes in Computer Science), Jürgen Lerner, Dorothea Wagner, and Katharina Anna Zweig (Eds.), vol. 5515. Springer, 65--80.Google ScholarGoogle Scholar
  36. Rohit Gurjar and Thomas Thierauf. 2017. Linear matroid intersection is in quasi-NC. In 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC'17), (Montreal, QC, Canada, June 19-23, 2017), Hamed Hatami, Pierre McKenzie, and Valerie King (Eds.). ACM, 821--830. DOI:https://doi.org/10.1145/3055399.3055440Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Gregory Z. Gutin, M. S. Ramanujan, Felix Reidl, and Magnus Wahlström. 2019. Path-contractions, edge deletions and connectivity preservation. J. Comput. Syst. Sci. 101 (2019), 1--20. DOI:https://doi.org/10.1016/j.jcss.2018.10.001Google ScholarGoogle ScholarCross RefCross Ref
  38. Danny Harnik and Moni Naor. 2010. On the compressibility of instances and cryptographic applications. SIAM J. Comput. 39, 5 (2010), 1667--1713.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Danny Hermelin and Xi Wu. 2012. Weak compositions and their applications to polynomial lower bounds for kernelization. In 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'12), (Kyoto, Japan, January 17-19, 2012), Yuval Rabani (Ed.). SIAM, 104--113.Google ScholarGoogle ScholarCross RefCross Ref
  40. Eva-Maria C. Hols and Stefan Kratsch. 2016. A randomized polynomial kernel for subset feedback vertex set. In Proceedings of the 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016), Nicolas Ollinger and Heribert Vollmer (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 43:1–43:14. http://drops.dagstuhl.de/opus/volltexte/2016/5744.Google ScholarGoogle Scholar
  41. Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. 2016. Half-integrality, LP-branching, and FPT algorithms. SIAM J. Comput. 45, 4 (2016), 1377--1411. DOI:https://doi.org/10.1137/140962838Google ScholarGoogle ScholarCross RefCross Ref
  42. Bart M. P. Jansen and Hans L. Bodlaender. 2013. Vertex cover kernelization revisited - Upper and lower bounds for a refined parameter. Theory Comput. Syst. 53, 2 (2013), 263--299. DOI:https://doi.org/10.1007/s00224-012-9393-4Google ScholarGoogle ScholarCross RefCross Ref
  43. Subhash Khot. 2002. On the power of unique 2-prover 1-round games. In IEEE Conference on Computational Complexity. 25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Stephan Kottler, Michael Kaufmann, and Carsten Sinz. 2008. Computation of renameable Horn backdoors. In SAT (Lecture Notes in Computer Science), Hans Kleine Büning and Xishun Zhao (Eds.), Vol. 4996. Springer, 154--160.Google ScholarGoogle Scholar
  45. Stefan Kratsch. 2018. A randomized polynomial kernelization for vertex cover with a smaller parameter. SIAM J. Discrete Math. 32, 3 (2018), 1806--1839. DOI:https://doi.org/10.1137/16M1104585Google ScholarGoogle ScholarCross RefCross Ref
  46. Stefan Kratsch and Magnus Wahlström. 2012. Representative sets and irrelevant vertices: New tools for kernelization. In FOCS. IEEE Computer Society, 450--459.Google ScholarGoogle Scholar
  47. Stefan Kratsch and Magnus Wahlström. 2014. Compression via matroids: A randomized polynomial kernel for odd cycle transversal. ACM Transactions on Algorithms 10, 4 (2014), 20. DOI:https://doi.org/10.1145/2635810Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Frank Thomson Leighton and Ankur Moitra. 2010. Extensions and limits to vertex sparsification. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, Leonard J. Schulman (Ed.). ACM, 47--56. DOI:https://doi.org/10.1145/1806689.1806698Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. 2018. Deterministic truncation of linear matroids. ACM Trans. Algorithms 14, 2 (2018), 14:1–14:20. DOI:https://doi.org/10.1145/3170444Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. 2014. Faster parameterized algorithms using linear programming. ACM Trans. Algorithms 11, 2 (2014), 15:1–15:31. DOI:https://doi.org/10.1145/2566616Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. László Lovász. 1977. Flats in matroids and geometric graphs. In Proc. Sixth British Combinatorial Conf. (Combinatorial Surveys). 45--86.Google ScholarGoogle Scholar
  52. Dániel Marx. 2006. Parameterized graph separation problems. Theor. Comput. Sci. 351, 3 (2006), 394--406.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Dániel Marx. 2009. A parameterized view on matroid optimization problems. Theor. Comput. Sci. 410, 44 (2009), 4471--4479.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Dániel Marx and Igor Razgon. 2014. Fixed-parameter tractability of multicut parameterized by the size of the cutset. SIAM J. Comput. 43, 2 (2014), 355--388. DOI:https://doi.org/10.1137/110855247Google ScholarGoogle ScholarCross RefCross Ref
  55. Dániel Marx and Ildikó Schlotter. 2011. Stable assignment with couples: Parameterized complexity and local search. Disc, Optim 8, 1 (2011), 25--40.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Syed Mohammad Meesum, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. 2019. Rank vertex cover as a natural problem for algebraic compression. SIAM J. Discrete Math. 33, 3 (2019), 1277--1296. https://doi.org/10.1137/17M1154370Google ScholarGoogle ScholarCross RefCross Ref
  57. Karl Menger. 1927. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae 10, 1 (1927), 96--115.Google ScholarGoogle ScholarCross RefCross Ref
  58. Sounaka Mishra, Venkatesh Raman, Saket Saurabh, Somnath Sikdar, and C. Subramanian. 2011. The complexity of König subgraph problems and above-guarantee vertex cover. Algorithmica 61 (2011), 857--881. Issue 4. http://dx.doi.org/10.1007/s00453-010-9412-2 10.1007/s00453-010-9412-2.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Pranabendu Misra, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. 2017. Linear representation of transversal matroids and gammoids parameterized by rank. In - 23rd International Conference on Computing and Combinatorics (COCOON'17), (Hong Kong, China, August 3-5, 2017), (Lecture Notes in Computer Science), Yixin Cao and Jianer Chen (Eds.), vol. 10392. Springer, 420--432. DOI:https://doi.org/10.1007/978-3-319-62389-4_35Google ScholarGoogle Scholar
  60. Ankur Moitra. 2009. Approximation algorithms for multicommodity-type problems with guarantees independent of the graph size. In 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS'09), (October 25-27, 2009, Atlanta, Ga.). IEEE Computer Society, 3--12. DOI:https://doi.org/10.1109/FOCS.2009.28Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. 2012. LP can be a cure for parameterized problems. In STACS (LIPIcs), Christoph Dürr and Thomas Wilke (Eds.), vol. 14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 338--349.Google ScholarGoogle Scholar
  62. George L. Nemhauser and Leslie E. Trotter Jr.1975. Vertex packings: Structural properties and algorithms.Math. Program. 8 (1975), 232--248. DOI:https://doi.org/10.1007/BF01580444Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. James Oxley. 2011. Matroid Theory. Oxford University Press.Google ScholarGoogle Scholar
  64. Hazel Perfect. 1968. Applications of Menger’s graph theorem. J. Math. Anal. Appl. 22 (1968), 96--111.Google ScholarGoogle ScholarCross RefCross Ref
  65. Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. 2011. Paths, flowers and vertex cover. In ESA (Lecture Notes in Computer Science), Camil Demetrescu and Magnús M. Halldórsson (Eds.), vol. 6942. Springer, 382--393.Google ScholarGoogle Scholar
  66. Igor Razgon and Barry O’Sullivan. 2009. Almost 2-SAT is fixed-parameter tractable. J. Comput. Syst. Sci. 75, 8 (2009), 435--450.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. 2004. Finding odd cycle transversals. Oper. Res. Lett. 32, 4 (2004), 299--301.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Neil Robertson and Paul D. Seymour. 1995. Graph minors. XIII. The disjoint paths problem. Journal of Combinatorial Theory, Series B 63, 1 (1995), 65--110. DOI:https://doi.org/10.1006/jctb.1995.1006Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Alexander Schrijver. 2003. Combinatorial Optimization: Polyhedra and Efficiency. Springer.Google ScholarGoogle Scholar
  70. Stéphan Thomassé. 2010. A 4k kernel for feedback vertex set. ACM Trans. Alg. 6, 2 (2010).Google ScholarGoogle Scholar
  71. Magnus Wahlström. 2013. Abusing the Tutte matrix: An algebraic instance compression for the K-set-cycle problem. In 30th International Symposium on Theoretical Aspects of Computer Science, (STACS 2013), (February 27 - March 2, 2013, Kiel, Germany (LIPIcs)), Natacha Portier and Thomas Wilke (Eds.), vol. 20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 341--352. DOI:https://doi.org/10.4230/LIPIcs.STACS.2013.341Google ScholarGoogle Scholar
  72. Sergei Winitzki. 2010. Linear Algebra via Exterior Products. https://sites.google.com/site/winitzki/linalg.Google ScholarGoogle Scholar

Index Terms

  1. Representative Sets and Irrelevant Vertices: New Tools for Kernelization

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Journal of the ACM
        Journal of the ACM  Volume 67, Issue 3
        Distributed Computing, Parameterized Complexity Theory, Randomized Algorithms, and Computational Geometry
        June 2020
        189 pages
        ISSN:0004-5411
        EISSN:1557-735X
        DOI:10.1145/3400020
        Issue’s Table of Contents

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 2 June 2020
        • Online AM: 7 May 2020
        • Accepted: 1 February 2020
        • Revised: 1 January 2020
        • Received: 1 November 2017
        Published in jacm Volume 67, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format