skip to main content
research-article

Knowledge Discovery in Simulation Data

Authors Info & Claims
Published:25 November 2020Publication History
Skip Abstract Section

Abstract

This article provides a comprehensive and in-depth overview of our work on knowledge discovery in simulations. Application-wise, we focus on manufacturing simulations. Specifically, we propose and discuss a methodology for designing, executing, and analyzing large-scale simulation experiments with a broad coverage of possible system behavior targeted at generating knowledge about the system. Based on the concept of data farming, we suggest a two-phase process which starts with a data generation phase, in which a smart experiment design is used to set up and efficiently execute a large number of simulation experiments. In the second phase, the knowledge discovery phase, data mining and visually aided analysis methods are applied on the gathered simulation input and output data. This article gives insights into this knowledge discovery phase by discussing different machine learning approaches and their suitability for different manufacturing simulation problems. With this, we provide guidelines on how to conduct knowledge discovery studies within the manufacturing simulation context. We also introduce different case studies, both academic and applied, and use them to validate our methodology.

References

  1. R. Arias-Hernandez, L. T. Kaastra, T. M. Green, and B. Fisher. 2011. Pair analytics: Capturing reasoning processes in collaborative visual analytics. In Proceedings of the 44th Hawaii International Conference on System Sciences. IEEE, Washington DC, 1–10. DOI:https://doi.org/10.1109/HICSS.2011.339Google ScholarGoogle Scholar
  2. Michael Behrisch, Dirk Streeb, Florian Stoffel, Daniel Seebacher, Brian Matejek, Stefan H. Weber, Sebastian Mittelstaedt, Hanspeter Pfister, and Daniel Keim. 2018. Commercial visual analytics systems - Advances in the big data analytics field. IEEE Transactions on Visualization and Computer Graphics. DOI:https://doi.org/10.1109/TVCG.2018.2859973Google ScholarGoogle Scholar
  3. Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Kötter, Thorsten Meinl, Peter Ohl, Kilian Thiel, and Bernd Wiswedel. 2009. KNIME - The Konstanz information miner. ACM SIGKDD Explorations Newsletter 11, 1 (2009), 26. DOI:https://doi.org/10.1145/1656274.1656280Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Christopher M. Bishop. 2009. Pattern recognition and machine learning (8th). Information Science and Statistics. Springer, New York.Google ScholarGoogle Scholar
  5. Thomas M. Cioppa and Thomas W. Lucas. 2007. Efficient nearly orthogonal and space-filling Latin hypercubes. Technometrics 49, 1 (2007), 45--55. DOI:https://doi.org/10.1198/004017006000000453Google ScholarGoogle ScholarCross RefCross Ref
  6. Çağatay Demiralp, Peter J. Haas, Srinivasan Parthasarathy, and Tejaswini Pedapati. 2017. Foresight: Rapid data exploration through guideposts. In Proceedings of the DSIA Workshop at IEEE VIS.Google ScholarGoogle Scholar
  7. Filip K. Dosilovic, Mario Brcic, and Nikica Hlupic. 2018. Explainable artificial intelligence: A survey. In Proceedings of the 41st International Convention on Information and Communication Technology, Electronics and Microelectronics. IEEE, 210--215. DOI:https://doi.org/10.23919/MIPRO.2018.8400040Google ScholarGoogle ScholarCross RefCross Ref
  8. Geoffry Ellis and Alan Dix. 2007. A taxonomy of clutter reduction for information visualisation. IEEE Transactions on Visualization and Computer Graphics 13, 6 (2007), 1216--1223. DOI:https://doi.org/10.1109/TVCG.2007.70535Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. 1996. From data mining to knowledge discovery in databases. AI Magazine 17, 37--54.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Niclas Feldkamp, Soeren Bergmann, and Steffen Strassburger. 2015. Knowledge discovery in manufacturing simulations. In Proceedings of the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM PADS’15). ACM, New York, 3--12. DOI:https://doi.org/10.1145/2769458.2769468Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Niclas Feldkamp, Soeren Bergmann, and Steffen Strassburger. 2015. Visual analytics of manufacturing simulation data. In Proceedings of the 2015 Winter Simulation Conference. IEEE, Piscataway, N.J., 779--790.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Niclas Feldkamp, Soeren Bergmann, and Steffen Strassburger. 2017. Online analysis of simulation data with stream-based data mining. In Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS'17). ACM, New York, 241--248. DOI:https://doi.org/10.1145/3064911.3064915Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Niclas Feldkamp, Soeren Bergmann, Steffen Strassburger, Erik Borsch, Magnus Richter, and Rainer Souren. 2018. Combining data farming and data envelopment analysis for measuring productive efficiency in Manufacturing Simulations. In Proceedings of the 2018 Winter Simulation Conference. IEEE, Piscataway, N.J.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Niclas Feldkamp, Soeren Bergmann, Steffen Strassburger, and Thomas Schulze. 2017. Knowledge discovery and robustness analysis in manufacturing simulations. In Proceedings of the 2017 Winter Simulation Conference. IEEE.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Niclas Feldkamp, Soeren Bergmann, Steffen Strassburger, Thomas Schulze, Praneeth Akondi, and Marco Lemessi. 2017. Knowledge discovery in simulation data – A case study for a backhoe assembly line. In Proceedings of the 2017 Winter Simulation Conference. IEEE, 4456--4458.Google ScholarGoogle ScholarCross RefCross Ref
  16. Niclas Feldkamp, Sören Bergmann, Steffen Strassburger, and Thomas Schulze. 2016. Knowledge discovery in simulation data: A case study of a gold mining facility. In Proceedings of the 2016 Winter Simulation Conference. IEEE, Piscataway, N. J. 1607--1618. DOI:https://doi.org/10.1109/WSC.2016.7822210Google ScholarGoogle ScholarCross RefCross Ref
  17. Leonardo Feltrin. 2015. KNIME an open source solution for predictive analytics in the geosciences [software and data sets]. IEEE Geoscience and Remote Sensing Magazine 3, 4 (2015), 28--38. DOI:https://doi.org/10.1109/MGRS.2015.2496160Google ScholarGoogle ScholarCross RefCross Ref
  18. Philippe J. Giabbanelli. 2010. Impact of complex network properties on routing in backbone networks. In Proceedings of the 2010 IEEE Globecom Workshops // 2010 IEEE Globecom Workshops (GC'10). Workshops: Dec. 5, 2010 to Dec. 10, 2010 in Miami, Florida. IEEE, Piscataway, N.J., 389--393. DOI:https://doi.org/10.1109/GLOCOMW.2010.5700347Google ScholarGoogle Scholar
  19. R. R. Hill, J. O. Miller, and G. A. McIntyre. 2001. Applications of discrete event simulation modeling to military problems. In Proceedings of the 2001 Winter Simulation Conference. IEEE, Piscataway, N.J., 780--788. DOI:https://doi.org/10.1109/WSC.2001.977367Google ScholarGoogle Scholar
  20. Gary Horne, Bernt Åkesson, Ted Meyer. 2014. Data farming in support of NATO. Final Report of Task Group MSG-088. STO technical report, TR-MSG-088. North Atlantic Treaty Organisation, Neuilly-sur-Seine Cedex.Google ScholarGoogle Scholar
  21. Gary E. Horne and Ted E. Meyer. 2005. Data farming: Discovering surprise. In Proceedings of the 2005 Winter Simulation Conference. IEEE, Piscataway, N.J., 1082--1087.Google ScholarGoogle Scholar
  22. D. Kallfass and T. Schlaak. 2012. NATO MSG-088 case study results to demonstrate the benefit of using data farming for military decision support. In Proceedings of the 2012 Winter Simulation Conference (WSC 2012). IEEE, Piscataway, N. J. 1--12. DOI:https://doi.org/10.1109/WSC.2012.6465132Google ScholarGoogle Scholar
  23. Daniel A. Keim. 2002. Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics 8, 1 (2002), 1--8. DOI:https://doi.org/10.1109/2945.981847Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Daniel A. Keim, Florian Mansmann, Jörn Schneidewind, Jim Thomas, and Hartmut Ziegler. 2008. Visual analytics: Scope and challenges. In Visual Data Mining: Theory, Techniques and Tools for Visual Analytics, Simeon Simoff, Michael H. Boehlen and Arturas Mazeika, Eds. Springer, Berlin.Google ScholarGoogle Scholar
  25. Jack P. C. Kleijnen, Susan M. Sanchez, Thomas W. Lucas, and Thomas M. Cioppa. 2005. State-of-the-art review: A user's guide to the brave new world of designing simulation experiments. INFORMS Journal on Computing 17, 3 (2005), 263--289.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Bum C. Kwon, Janu Verma, Peter J. Haas, and Cagatay Demiralp. 2017. Sampling for scalable visual analytics. IEEE Computer Graphics and Applications 37, 1 (2017), 100--108. DOI:https://doi.org/10.1109/MCG.2017.6Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Averill M. Law. 2003. How to conduct a successful simulation study. In Proceedings of the 2003 Winter Simulation Conference. IEEE, Piscataway, N. J. 66--70. DOI:https://doi.org/10.1109/WSC.2003.1261409Google ScholarGoogle ScholarCross RefCross Ref
  28. Martin Luboschik, Stefan Rybacki, Roland Ewald, Benjamin Schwarze, Heidrun Schumann, and Adelinde M. Uhrmacher. 2012. Interactive visual exploration of simulator accuracy: A case study for stochastic simulation algorithms. In Proceedings of the 2012 Winter Simulation Conference. WSC ’12. IEEE., Piscataway, N.J.Google ScholarGoogle Scholar
  29. Martin Luboschik, Christian Tominski, Arne Bittig, Adelinde Uhrmacher, and H. Schumann. 2012. Towards interactive visual analysis of microscopic-level simulation data. In Proceedings of SIGRAD 2012. Interactive Visual Analysis of Data, 81. Linköping University Electronic Press, Linköpings, 91--94.Google ScholarGoogle Scholar
  30. Kresimir Matkovic, Denis Gračanin, Mario Jelović, and Helwig Hauser. 2015. Interactive visual analysis of large simulation ensembles. In Proceedings of the 2015 Winter Simulation Conference. IEEE., Piscataway, N.J., 517--528. DOI:https://doi.org/10.1109/WSC.2015.7408192Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ana Minanovic, Hrvoje Gabelica, and Zivko Krstic. 2014. Big data and sentiment analysis using KNIME: Online reviews vs. Social Media. In Proceedings of the 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, 1464--1468. DOI:https://doi.org/10.1109/MIPRO.2014.6859797Google ScholarGoogle Scholar
  32. Brian L. Morgan, Harrison C. Schramm, Jerry R. Smith, Thomas W. Lucas, Mary L. McDonald, Paul J. Sánchez, Susan M. Sanchez, and Stephen C. Upton. 2018. Improving U.S. Navy campaign analyses with big data. Interfaces 48, 2 (2018), 130--146. DOI:https://doi.org/10.1287/inte.2017.0900Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Christopher J. Nannini, Jeffrey A. Appleget, and Alejandro S. Hernandez. 2013. Game for peace: Progressive education in peace operations. The Journal of Defense Modeling and Simulation 10, 3 (2013), 283--296. DOI:https://doi.org/10.1177/1548512913477258Google ScholarGoogle ScholarCross RefCross Ref
  34. Susan M. Sanchez. 2014. Simulation experiments: Better data, not just big data. In Proceedings of the 2014 Winter Simulation Conference. IEEE, Piscataway, N. J. 805--816.Google ScholarGoogle ScholarCross RefCross Ref
  35. Susan M. Sanchez, Thomas W. Lucas, Paul J. Sanchez, Christopher J. Nannini, and Hong Wan. 2012. Designs for large‐scale simulation experiments, with applications to defense and homeland security. In Design and Analysis of Experiments: Special Designs and Applications. Klaus Hinkelmann, Ed. John Wiley 8 Sons, Inc., Hoboken, N.J., 413--442.Google ScholarGoogle Scholar
  36. Susan M. Sanchez and Hong Wan. 2009. Better than a petaflop: The power of efficient experimental design. In Proceedings of the 2009 Winter Simulation Conference (WSC 2009). (Austin, Texas: 13–16 December 2009). IEEE, Piscataway, N.J., 60--74. DOI:https://doi.org/10.1109/WSC.2009.5429316Google ScholarGoogle Scholar
  37. Johan Schubert, Ronnie Johansson, and Pontus Hörling. 2015. Skewed distribution analysis in simulation-based operation planning. In Proceedings of the 9th Operations Research and Analysis Conference.Google ScholarGoogle Scholar
  38. Danielle Soban, David Thornhill, Santosh Salunkhe, and Alastair Long. 2016. Visual analytics as an enabler for manufacturing process decision-making. Procedia CIRP 56, 209--214. DOI:https://doi.org/10.1016/j.procir.2016.10.056Google ScholarGoogle ScholarCross RefCross Ref
  39. Zhiwu Tang, Qing Xue, Meng Zhao, and Yang Wei. 2009. Decision tree algorithm for tank damage analysis in combat simulation tests. In Proceedings of the 9th International Conference on Electronic Measurement 8 Instruments (ICEMI 2009), 3-830-3–835. DOI:https://doi.org/10.1109/ICEMI.2009.5274185Google ScholarGoogle ScholarCross RefCross Ref
  40. Simon J. E. Taylor, Tamas Kiss, Anastasia Anagnostou, Gabor Terstyanszky, Peter Kacsuk, Joris Costes, and Nicola Fantini. 2018. The CloudSME simulation platform and its applications. A Generic Multi-cloud Platform for Developing and Executing Commercial Cloud-based Simulations. Future Generation Computer Systems 88, 524--539. DOI:https://doi.org/10.1016/j.future.2018.06.006Google ScholarGoogle ScholarCross RefCross Ref
  41. Hasan Tercan, Toufik Al Khawli, Urs Eppelt, Christian Büscher, Tobias Meisen, and Sabina Jeschke. 2016. Use of classification techniques to design laser cutting processes. Procedia 5CIRP6 52, 292--297. DOI:https://doi.org/10.1016/j.procir.2016.08.001Google ScholarGoogle Scholar
  42. J. J. Thomas and Kristin A. Cook. 2005. Illuminating the Path. Research and Development Agenda for Visual Analytics (1st). IEEE Computer Society, Los Alamitos, California.Google ScholarGoogle Scholar
  43. Luxmi Verma, S. Srinivasan, and Varun Sapra. 2014. Integration of rule based and case based reasoning system to support decision making. In Proceedings of the International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT). IEEE, 106--108. DOI:https://doi.org/10.1109/ICICICT.2014.6781260Google ScholarGoogle ScholarCross RefCross Ref
  44. Sigrid Wenzel, Jochen Bernhard, and Ulrich Jessen. 2003. Visualization for modeling and simulation: A taxonomy of visualization techniques for simulation in production and logistics. In Proceedings of the 2003 Winter Simulation Conference. IEEE., Piscataway, N.J.Google ScholarGoogle Scholar
  45. Mike Wu, Michael C. Hughes, Sonali Parbhoo, Maurizio Zazzi, Volker Roth, and Finale Doshi Velez. 2018. Beyond Sparsity: Tree Regularization of Deep Models for Interpretability. AAAI.Google ScholarGoogle Scholar
  46. Zheguang Zhao, Lorenzo de Stefani, Emanuel Zgraggen, Carsten Binnig, Eli Upfal, and Tim Kraska. 2017. Controlling false discoveries during interactive data exploration. In Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD'17). ACM, New York, 527--540. DOI:https://doi.org/10.1145/3035918.3064019Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Knowledge Discovery in Simulation Data

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Modeling and Computer Simulation
          ACM Transactions on Modeling and Computer Simulation  Volume 30, Issue 4
          Special Issue on Toward an Ecosystem of Models and Data
          October 2020
          116 pages
          ISSN:1049-3301
          EISSN:1558-1195
          DOI:10.1145/3439453
          Issue’s Table of Contents

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 25 November 2020
          • Online AM: 7 May 2020
          • Accepted: 1 March 2020
          • Revised: 1 February 2020
          • Received: 1 September 2018
          Published in tomacs Volume 30, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format