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ABSTRACT
Edges play a crucial role in passing information on a graph, espe-
cially when they carry textual content reflecting semantics behind
how nodes are linked and interacting with each other. In this pa-
per, we propose a channel-aware attention mechanism enabled by
edge text content when aggregating information from neighboring
nodes; and we realize this mechanism in a graph autoencoder frame-
work. Edge text content is encoded as low-dimensional mixtures of
latent topics, which serve as semantic channels for topic-level infor-
mation passing on edges. We embed nodes and topics in the same
latent space to capture their mutual dependency when decoding the
structural and textual information on graph. We evaluated the pro-
posed model on Yelp user-item bipartite graph and StackOverflow
user-user interaction graph. The proposed model outperformed
a set of baselines on link prediction and content prediction tasks.
Qualitative evaluations also demonstrated the descriptive power
of the learnt node embeddings, showing its potential as an inter-
pretable representation of graphs.
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1 INTRODUCTION
Graphs are ubiquitous and exist in a wide variety of forms in real
world, including social networks [23], user-item bipartite connec-
tions [3], citation networks [30], and many more [2, 24]. As one of
the most general forms of data representation, tremendous research

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403233

Figure 1: A motivating example of content-based edge chan-
nels across connected nodes. Color indicates topics, and
width of colored areas on edge reflects the topic proportion
on each connection.

attention has been constantly devoted in analyzing, modeling, and
mining graphs [7, 31].

A graph utilizes edges to encode relational knowledge about
interacting nodes. Edges, instead of being simply binary indicators
of connectivity, are often in possession of rich and multi-modal
information. For example inmultiplex and attributed graphs [8, 34],
a set of attributes are associated with edges to represent what types
of proximity exist between nodes. Unlike attributes with explicitly
predefined meanings, unstructured text content on edges carries
latent but informative semantics that manifest how and why nodes
are related. Text content tied with edges is also pervasive in real-
world graphs. This urges us to leverage such rich semantic content
to unleash the potential of reasoning and explaining the interactions
between nodes, e.g., an interpretable graph representation.

To illustrate this new perspective for graph modeling, Figure 1
shows the motivating example of our work in this paper, which is
extracted from a set of real users’ interactions on Stack Overflow1.
We visualize the text content that users post to each other by word
clouds. The content suggests that all four users’ interactions focus
on different aspects of “programming”, but their interactions clearly
take distinct concentrations. For instance, the interactions between
Eve and Mia are mostly about “socket, IP, host”, reflecting their
shared interest on the topic of “network programming”, while Eve
and David are more likely to interact on “multithreading”. Without
such fine-grained signals about the nodes’ relations, it is hard for a
statistical model to accurately characterize the nodes solely from
the graph structure, not mentioning to infer the dependency among
them (e.g., how they are related).

In spite of the ubiquity and informativeness of textual edge
content, little effort has been devoted to utilizing such semantic
information in modeling graphs. Current mainstream effort focuses
1Stack Overflow: http://stackoverflow.com
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on modeling graph structures, e.g., adjacency matrix or Laplacian
matrix [16, 25]. Such solutions are designed to assign similar repre-
sentations to nodes with a similar neighborhood structure, but can-
not further differentiate the nuance among such nodes. As shown in
Figure 1, classical graph embedding methods tend to assign Mia and
Dave similar embedding vectors, because they share connections
with Eve. But the edge content suggests otherwise, as they interact
with Eve for different reasons. Some recent efforts address this
issue by manually crafted edge features that generate edge-specific
transformation matrices when aggregating node embeddings from
neighbors [9, 14]. Yang et al. [32] also consider multi-modal edges
by assuming a distribution of multiple relations underlying each
edge. But such solutions separate the modeling of edge text content
from the modeling of graph structure, which creates a gap between
the efforts on these two related modeling tasks.

Modeling edge text content imposes several new challenges, and
thus can never be a straightforward extension of existing graph em-
bedding solutions. First, compared to well-defined edge attributes
or feature vectors [8], text content is highly unstructured, high-
dimensional, and sometimes noisy. This poses difficulties to distill
meaningful and low-dimensional information to reason about the
associated node connections [5]. Second, text content is often a
mixture of hidden semantics. For example, one piece of text might
cover multiple correlated themes or topics, which is in a sharp
contrast to edge attributes that are defined to be independent and
mutually exclusive [32]. Third, text content on edges is mutually
dependent on graph structure and node properties. For example in
social networks, individuals are more likely to form ties with others
sharing similar interests (known as homophily [22]); but once con-
nected, they tend to generate content regarding the shared interest
(known as social influence [10]). All these challenges require graph
modeling to be performed hand in hand with content modeling,
fusing graph structural dependency with edge content semantics.

In this work, we propose a fresh principle for graph embedding:
nodes that are structurally and semantically similar should be close
in the embedding space. Wemeasure semantics underlying text con-
tent by topics, each of which is modeled as a probability distribution
over a fixed vocabulary [5]. Edge content can then be represented
as a topic distribution that characterizes the semantic relatedness
between two interacting nodes. This leads to a fine-grained in-
formation aggregation mechanism on top of graph convolutions
[20]: We decompose each edge into multiple channels, where each
channel corresponds to a particular topic and the associated topic
proportion indicates channel bandwidth for message passing. As a
result, nodes will be embedded closer if they are more semantically
related as suggested by the edge content about their interactions.

We realize the edge content based channel mechanism in a uni-
fied graph autoencoder framework, namely Channel-aware Graph
Attention Network (CGAT). In this framework, information is ag-
gregated by jointly attending neighboring nodes guided by both
node embeddings and topical channels learned from edge text con-
tent. For each convolution layer in the encoder, we embed nodes
and topics to the same latent space such that their mutual depen-
dency is captured for a decoder to reconstruct the structural and
textual information. The affinity between nodes is characterized
by their proximity in the embedding space, which is used to re-
construct the connection structure. And the connected nodes are

projected onto the topic space to measure affinity between topics
and nodes, which is then used to construct the prior distribution
of topics on the edge to regularize the reconstruction of edge text
content. We infer the distribution of topics on the graph edges via a
variational autoencoder, which provides an efficient and flexible so-
lution for posterior inference in our model. Extensive experiments
on two real-world large-scale graphs constructed from Yelp and
StackOverflow demonstrate the expressive and predictive power of
the proposed CGAT framework.

2 RELATEDWORK
Recent years have witnessed a surge of interest in generalizing
convolution operations in neural networks to modeling graphs,
referred to as graph convolutional networks (GCNs). Early work
define spectral convolution in the Fourier domain by computing the
eigen decomposition of graph Laplacian [6]. Subsequent extensions
and approximations [11, 20] are proposed to make the spectral
filters spatially localized. This type of approaches have attracted
tremendous attention due to their strong performance in a variety
of tasks, such as node classification [4] and link prediction [28]. A
major limitation of these traditional graph convolutional methods
is that the filters are learned on the entire graph Laplacian, which
lacks feasibility and scalability when graph is changed or includes
more information. Non-spectral approaches [17], on the other hand,
define convolutions directly on graph to aggregate information
locally from neighbors, andmaintain the weight sharing property of
CNNs. Such solutions have yielded impressive performance across
several large-scale inductive benchmarks [33].

The representability of GCNs largely depends on how states
of nodes are transformed during message passing [12], and side
information on nodes and edges is introduced to enable a variety of
transformations. Node feature is incorporated in [1, 30] to reweigh
the transformed neighbor states via a self-attention mechanism.
Node textual information is used to capture the semantic correla-
tion between nodes via a mutual attention mechanism [29]. Edge
types are considered in multi-relational graphs, where each edge
is associated with a particular type of relation, to generate type-
specific transformation [8, 26, 32]. Multiple modalities of edges are
modeled in [32], which assumes a distribution of multiple relations
underlying each edge. To handle general edge features, Gong and
Cheng [14] directly incorporate edge feature vectors to extend the
attention mechanism first proposed in [30] by attending neighbors
for each type of features. Gilmer et al. [13] introduce an edge net-
work which takes the feature vectors of edges as input and outputs
matrices to transform neighboring nodes’ embeddings. As a follow
up, Chen et al. [9] maximize the mutual information between the
input feature matrix and the output transformation matrices to
preserve edge features.

In these existing studies, incorporating node and edge content
has been demonstrated effective for state transformation in infor-
mation aggregation. However, content information considered on
edges is mostly well-structured features, such as attributes and
types. Textual content on edges carrying rich semantic informa-
tion about what triggers the connection between the nodes, is
surprisingly underexplored. In contrast, our work extracts low-
dimensional semantics from edge text and enables a channel-aware
information aggregation mechanism to exploit such signals.
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3 METHODOLOGY
To guide information aggregation among nodes by the hidden se-
mantics underlying edge text content, we propose a unified autoen-
coder framework, named Channel-aware Graph Attention Network
(CGAT). In this section, we first present the key building block layer
which decomposes edge as a group of topical channels, and propa-
gates information according to the channels. Then we explain how
to infer the latent channels from edge text content via a variational
autoencoder. As a whole, these different components are joined
by a reconstruction loss defined on the graph structure and edge
content and estimated in an end-to-end fashion.

3.1 Channel-aware Attention Layer
In Figure 1, we illustrated our key insight that edge text content
serving as a form of local context can differentiate connections
semantically. It injects important edge-specific supervision when
transforming and aggregating neighboring states. Following this
insight, we propose to profile every edge on graph as a mixture of
semantic-driven channels, which guide a fine-grain information
aggregation through a channel-aware attention layer.

Formally, we assume 𝐾 latent semantic channels and each edge
is associated to these channels with different bandwidths. In the
channel-aware attention layer, state from each neighbor is passed
and attended with respect to each channel. The input of one layer
has two parts: 1) node states, 𝒉 = {ℎ1, . . . , ℎ |𝑉 |}, ℎ𝑖 ∈ R𝑚 , where
|𝑉 | is the number of nodes and 𝑚 is the dimension of node em-
bedding in the current layer; 2) channel bandwidths on all edges,
Λ = {𝜆𝑖 𝑗 }𝑒𝑖 𝑗 ∈𝐸 , 𝜆𝑖 𝑗 ∈ Δ𝐾 , where 𝐸 is the edge set of the given graph
with 𝑒𝑖 𝑗 denoting the edge between node 𝑖 and 𝑗 . Δ𝐾 is a probability
simplex over 𝐾 dimensions, i.e., ∀𝑘, 𝜆𝑘

𝑖 𝑗
≥ 0 and

∑𝐾
𝑘=1 𝜆

𝑘
𝑖 𝑗

= 1. The
layer outputs node states, 𝒉′ = {ℎ′1, . . . , ℎ

′
|𝑉 |}, ℎ

′
𝑖
∈ R𝑚′

. Note that
multiple layers can be stacked, and the node states output in one
layer will be used as input of the next layer. To unify our nota-
tions, we denote the raw input node features as 𝒉(0) , and the final
embeddings output at the last layer 𝐿 as 𝒖 ≡ 𝒉(𝐿) .

To jointly attend neighbors and channels on each channel-aware
attention layer, we propose the following aggregation operation:

ℎ′𝑖 = 𝜎
( 1
𝐾

∑𝐾

𝑘=1

∑
𝑗 ∈N𝑖

𝜆𝑘𝑖 𝑗𝛼
𝑘
𝑖 𝑗𝑊

𝑘ℎ 𝑗
)

(1)

N𝑖 is the neighborhood of node 𝑖 and 𝜎 is the sigmoid function for
non-linearity. There are two key components to realize our principle
for graph embedding, i.e., structural and semantic similarity, which
are explained as follows.

First, the aggregation is performed locally within each node’s
neighborhood, which preserves the structural information in node
states. Second, 𝜆𝑘

𝑖 𝑗
denotes the bandwidth of the𝑘-th channel, which

indicates the importance of this channel to the interaction between
node 𝑖 and 𝑗 . {𝜆𝑘

𝑖 𝑗
}𝐾
𝑘=1 are latent channel variables underlying the

associated edge content on 𝑒𝑖 𝑗 , and we will discuss how to infer
them in the next section. Basically, 𝜆𝑘

𝑖 𝑗
is expected to be larger if

the edge content is more related to channel 𝑘 to reveal semantic
similarity between node 𝑖 and 𝑗 . Correspondingly, 𝛼𝑘

𝑖 𝑗
is the self-

attention coefficient which measures the relatedness between node
𝑗 ’s state to node 𝑖 with respect to channel 𝑘 . We follow GAT’s

Figure 2: Illustration of channel-aware attention layer. Each
edge is decomposed by channels, denoted by different colors,
with width of colored area indicating the importance of the
channel between connected nodes.

multi-head attention scheme [30] to compute 𝛼𝑘
𝑖 𝑗
as follows,

𝛼𝑘𝑖 𝑗 =
exp (LeakyReLU(𝑎𝑘⊤ [𝑊 𝑘ℎ𝑖 ∥𝑊 𝑘ℎ 𝑗 ]))∑

𝑗 ′∈N𝑖
exp (LeakyReLU(𝑎𝑘⊤ [𝑊 𝑘ℎ𝑖 ∥𝑊 𝑘ℎ 𝑗 ′]))

(2)

where ∥ is the concatenation operation over two vectors. For the
𝑘-th channel, 𝑎𝑘 ∈ R2𝑚′

is the weight vector of a single-layer
feed-forward neural network, and𝑊 𝑘 ∈ R𝑚′×𝑚 is a shared linear
transformation matrix over all edges in the graph. Each matrix𝑊 𝑘

is explicitly coupled with a particular channel 𝑘 . We handle the
special case of self-loop by setting 𝜆𝑖𝑖 to a uniform vector, if edge
𝑒𝑖𝑖 ∉ 𝐸 or no text content is associated with edge 𝑒𝑖𝑖 .

Unlike GAT where different heads of attention are assumed to
be independent and without any particular physical meaning, we
explicitly marry attention with the underlying semantic content
on edges. We use Figure 2 to depict the aggregation operation in
channel-aware attention layer: when updating the state of node 1,
we pass each neighbor’s state through 𝐾 = 3 semantic channels,
subject to 1) channel bandwidth 𝜆 derived from edge content, and 2)
attention score 𝛼 based on node states. Thus, two nodes influence
each other only when the semantics underlying their interaction is
about a channel and they are also related under this channel.

The design of our channel-aware attentionmechanism fulfills our
proposed principle of graph embedding: nodes that are structurally
and semantically similar should be close in the embedding space.
Previous work that only considered graph structure ignored an
important fact that nodes are inherently connected under multiple
relational semantics [32]. As shown in Figure 1, users are connected
based on different topical preferences reflected by the text con-
tent generated during their interactions. Essentially, information
propagated from different neighbors is not semantic-equivalently
received by the target node, which may result in structurally similar
nodes differing greatly in a semantic sense. For example, Eve and
Mia are connected for a different reason than that for Eve and David
in Figure 1. The proposed channel-level aggregation explicitly im-
poses attention on different semantic channels on each edge, such
that nodes will be embedded closer if they share similar semantics
behind their interactions. Furthermore, the learned channels along
with their inferred bandwidth can lead to fine-grain interpretability
of each modeled connection, which will be shown as the case study
in our later empirical study.
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Figure 3: Graphical model representation of the text gener-
ation between node 𝑖 and 𝑗 , whose states are embedded as ℎ𝑖
and ℎ 𝑗 . The upper plate indexed by 𝐾 denotes topic embed-
dings for channels. The right plate indexed by𝐷 denotes the
text documents on edge 𝑒𝑖 𝑗 .

3.2 Channel Modeling
To infer latent semantics underlying unstructured edge textual
content, we appeal to neural topic models, which are one of the
most popular methods for learning unsupervised representations
of text [5, 27]. As a result, the hidden semantics that form channels
are defined as topics, and the bandwidths of semantic channels for
each edge are modeled as a distribution over topics.

Without loss of generality, we assume edge between node 𝑖 and
node 𝑗 is associated with a set of documentsD𝑖 𝑗 = {𝒘1, . . . ,𝒘 |D𝑖 𝑗 |}.
Each document is denoted as a bag of words 𝒘𝑑 = {𝑤1, . . . ,𝑤𝑁 },
where each word is chosen from a vocabularyV . Given 𝐾 latent
topics over the graph, we assume that each document 𝒘𝑑 is gen-
erated by a mixture of latent topics specified by 𝜃𝑑 ∈ Δ𝐾 . Since
there may exist multiple documents between nodes 𝑖 and 𝑗 , aver-
aging the topic proportions over all these documents produces the
bandwidths on edge 𝑒𝑖 𝑗 for the channel-aware attention layer:

𝜆𝑖 𝑗 =
1

|D𝑖 𝑗 |
∑

𝑑∈D𝑖 𝑗

𝜃𝑑 (3)

Each of 𝐾 topics is denoted as a probability distribution 𝛽𝑘 ∈ Δ |V |

over the vocabulary. We use 𝛽 = (𝛽1, . . . , 𝛽𝐾 ) to represent the word
distribution under all topics. Recall that the hidden state for node 𝑖 is
ℎ𝑖 ∈ R𝑚 in our channel-aware attention layer, we embed each topic
with a state vector 𝜙𝑘 ∈ R𝑚 in the same space, and use Φ ∈ R𝐾×𝑚
to denote the matrix of embeddings for all 𝐾 topics [15].

For all documents associated with 𝑒𝑖 𝑗 , we impose a shared prior
topic distribution parameterized by Φ · (ℎ𝑖 + ℎ 𝑗 ), which reflects
the commonly shared topical preferences between the two nodes.
Intuitively, Φ · ℎ𝑖 projects node 𝑖 into the topic space to measure
its relatedness to each topic; and the prior on 𝑒𝑖 𝑗 reflects the joint
influence from node 𝑖 and 𝑗 . Other forms of prior distribution can
also be introduced, if one has more explicit knowledge about the
node and topic [21]. Based on this design of prior topic distribution,
Figure 3 shows the generative process of edge text content between
all pairs of nodes 𝑖 and 𝑗 in the graph, which can be described as
follows:

• For each topic 𝑘 :
– Draw its topic state vector 𝜙𝑘 ∼ N(0, 𝜖2𝐼 )

• For each document 𝑑 on edge between node 𝑖 and 𝑗 :
– Draw its topic proportion vector (indicating shared pref-
erence between 𝑖 and 𝑗 ) 𝜃𝑑 ∼ Dir

(
softmax(Φ · (ℎ𝑖 + ℎ 𝑗 ))

)
– For each word𝑤𝑑𝑛 :

∗ Draw its topic assignment 𝑧𝑑𝑛 ∼ Multi
(
softmax(𝜃𝑑 )

)
∗ Draw its word𝑤𝑑𝑛 ∼ Multi(𝛽𝑧𝑑𝑛 )

To simplify the notations, we will omit the subscript 𝑑 and de-
note 𝜃 as the per-document topic distribution by default. The topic
proportion can be obtained via posterior inference, 𝑝 (𝜃, 𝑧 |𝒘) =

𝑝 (𝜃, 𝑧,𝒘)/𝑝 (𝒘), which, however, is intractable caused by the cou-
pling between latent variables 𝜃 and 𝑧 in the marginal likelihood
𝑝 (𝒘). To efficiently solve the problem, we appeal to the variational
autoencoders (VAEs) [18] to approximate the posterior.

Specifically, we introduce a parametric variationalmodel𝑞(𝜃, 𝑧 |𝒘)
that takes observed document as input to approximate the poste-
rior, such that 𝑞(𝜃, 𝑧 |𝒘) ≈ 𝑝 (𝜃, 𝑧 |𝒘). The optimization problem of
minimizing the KL divergence between these two distributions is
equivalent to maximizing the evidence lower bound (ELBO):

L(𝑞, 𝑝) = E𝜃,𝑧∼𝑞
[

log𝑝 (𝒘 |𝜃, 𝑧)
]
− 𝐷𝐾𝐿

(
𝑞(𝜃, 𝑧 |𝒘)∥𝑝 (𝜃, 𝑧)

)
(4)

where 𝑞(𝜃, 𝑧 |𝒘) and 𝑝 (𝒘 |𝜃, 𝑧) are referred to as encoder model and
decoder model, respectively. To obtain unbiased gradients for the
parameters in the encoder network, the “reparameterization trick”
is widely employed [18, 19] when computing the expectation in
Eq (4). To sidestep the difficulty of applying this technique on
discrete variable 𝑧, we follow [27] to collapse 𝑧 and only leave 𝜃 :
𝑝 (𝑤𝑛 |𝜃 ) =

∑𝐾
𝑘=1 𝑝 (𝑤𝑛 |𝑧 = 𝑘)𝑝 (𝑧 = 𝑘 |𝜃 ) = (𝜃⊤𝛽)𝑤𝑛 , which elimi-

nates the hidden variable 𝑧 by directly drawing𝑤𝑛 ∼ Multi(𝜃⊤𝛽).
As a consequence, we simplify the ELBOwith 𝑞(𝜃 |𝒘) as the encoder
and 𝑝 (𝒘 |𝜃 ) as the decoder:

L(𝑞, 𝑝) = E𝜃∼𝑞
[

log𝑝 (𝒘 |𝜃 )
]
− 𝐷𝐾𝐿

(
𝑞(𝜃 |𝒘)∥𝑝 (𝜃 )

)
(5)

Given a document 𝒘 , the encoder network is set to a logistic
normal distribution 𝑞(𝜃 |𝒘) = LN(𝜇, Σ) with mean 𝜇 = MLP𝜇 (𝒘)
and variance Σ = MLPΣ (𝒘), where different multilayer percep-
trons are used to compute 𝜇 and Σ based on document content.
The decoder model is set to a multinomial distribution 𝑝 (𝒘 |𝜃 ) =∏𝑁
𝑛=1 𝑝 (𝑤𝑛 |𝜃 ) =

∏
𝑤∈V (𝜃⊤𝛽)𝑤 . Again, the prior is our imposed

Dirichlet distribution 𝑝 (𝜃 ) = Dir
(
softmax(Φ(ℎ𝑖 + ℎ 𝑗 ))

)
. We now

illustrate the computation of Eq (5) in detail.
• Compute E𝜃∼𝑞

[
log𝑝 (𝒘 |𝜃 )

]
. We utilize the reparameterization

trick to transform the random variable 𝜃 ∼ 𝑞(𝜃 |𝒘) as a function of
new variable 𝜖 :𝜃 = 𝜎 (𝜇+𝜀Σ1/2), where 𝜀 ∼ N(0, 𝐼 ). The expectation
is then rewritten over the reparameterized variable 𝜀, which can be
computed by sampling 𝜀 ∼ N(0, 𝐼 ):

E𝜃∼𝑞
[

log 𝑝 (𝒘 |𝜃 )
]
= E𝜀∼N(0,𝐼 )

[
𝒘⊤ log

(
𝜎 (𝜇 + 𝜀Σ1/2)⊤𝜎 (𝛽)

) ]
(6)

• Compute 𝐷𝐾𝐿
(
𝑞(𝜃 |𝒘)∥𝑝 (𝜃 )

)
. Given it is yet unknown about

how to develop an effective reparameterization function to handle
the Dirichlet distribution, we use the Laplace approximation [27] to
approximate the Dirichlet distribution by a logistic normal distribu-
tion 𝑝 (𝜃 ) ≈ LN(𝜇 ′, Σ′) with special forms of mean and diagonal
variance defined as:

𝜇 ′
𝑘
= log𝛼𝑘 −

1
𝐾

∑
𝑖

log𝛼𝑖 , Σ′𝑘𝑘 = (1 − 2
𝐾
) 1
𝛼𝑘

+ 1
𝐾2

∑
𝑖

1
𝛼𝑖

(7)

where 𝛼 = 𝜎
(
Φ(ℎ𝑖 +ℎ 𝑗 )

)
incorporates information from node states.

Consequently, the KL divergence is between two logistic normals,
which can be directly obtained by:

𝐷𝐾𝐿
(
𝑞(𝜃 |𝒘)∥𝑝 (𝜃 )

)
=

1
2

(
Tr(Σ′−1Σ)+(𝜇 ′−𝜇)Σ′−1 (𝜇 ′−𝜇)+log

|Σ′ |
|Σ|

)
(8)
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Figure 4: Illustration of the graph autoencoder architecture in CGAT. On the left side, CGAT uses the channel-aware attention
layers to encode nodes and use the topic-driven channel model to encode edge content in the corresponding latent spaces. On
the right side, CGAT decodes their embeddings to reconstruct the graph structure and edge text content.

Note that the objective function in Eq (5) is per-document. Each
channel-aware attention layer will be associated with multiple
documents, and the node embeddings are jointly optimized with
respect to the topic posteriors. For efficiency concerns, at training
time we randomly sample a batch of edges each time to compute
this objective function.

3.3 Model Objective
To jointly learn node embeddings and topic embeddings while
preserving the graph structural and edge textual information in an
unsupervised setting, we construct the following loss function:

𝐿 =
∑
𝑒𝑖 𝑗 ∈𝐸

{
− log

(
𝜎 (𝑢⊤𝑖 𝑢 𝑗 )

)
−𝑄 · E

𝑗𝑛∼N𝑖
log

(
𝜎 (−𝑢⊤𝑖 𝑢 𝑗𝑛 )

)
(9)

−
∑

𝑑∈D𝑖 𝑗

[
E𝜀∼N(0,𝐼 )

[
𝒘⊤
𝑑

log
(
𝜎 (𝜇𝑑 + 𝜀Σ1/2

𝑑
)⊤𝜎 (𝛽)

) ]
− 1

2

(
Tr(Σ′−1

𝑑
Σ𝑑 ) + (𝜇 ′

𝑑
− 𝜇𝑑 )⊤Σ′−1

𝑑
(𝜇 ′
𝑑
− 𝜇𝑑 ) + log

|Σ′
𝑑
|

|Σ𝑑 |

)]}
where 𝑢𝑖 is embedding of node 𝑖 from the output layer, N𝑖 is node
𝑖’s non-neighbor set from which𝑄 negative examples are randomly
sampled. The first term in Eq (9) represents the graph reconstruction
error, which pushes structurally close nodes together and separates
disconnected nodes in the embedding space. The rest terms, in-
herited from the ELBO for channel modeling, also carry evident
intuitions: The second term is the edge text content reconstruction
error, which encourages better topic representations from the ob-
served texts; and the third term from KL divergence between the
prior 𝑝 (𝜃 ) and the approximated posterior 𝑞(𝜃 |𝒘) poses a seman-
tic consistency regularization between the relatedness measured
by node states and the evidence given by their true interaction
texts. This objective pushes nodes that are structurally close and
semantically related to share similar embeddings, which meets our
principle for utilizing edge text content for graph embedding.

3.4 Summary of Model Architecture
Putting all components together, we realize the proposed CGAT in
a unified graph autoencoder framework; and Figure 4 illustrates
how local graph structure and edge content are jointly encoded in
one channel-aware attention layer.

We only illustrate the workflow of one layer in our channel-
aware attention mechanism; but it generalizes to all other layers.
The input is a set of nodes with states 𝒉(𝑙) and observed edges
among them. Each edge is associated with one or multiple docu-
ments, and here we only show one document per edge for simplicity.
We first model channels from edge text content. For document𝒘12
between nodes 1 and 2, we encode it as a distribution over topics
using the topic inference network 𝑞(𝜃 |𝒘12) regularized by the prior
from node states Φ · (ℎ (𝑙)1 + ℎ (𝑙)2 ). We obtain the channel band-
widths 𝜆12 according to Eq (3), and the same on other edges, which
is highlighted by the first yellow arrow in Figure 4. The inferred
bandwidths are then used to obtain the node states for the next
layer following Eq (1). As shown in the blue arrow, node 1 updates
its state as ℎ (𝑙+1)

1 by aggregating its neighbors’ information via
channel-aware attention. The last layer outputs the node embed-
ding 𝑢1. To jointly learn the embedding of each node and the topic
posterior of each edge document, the decoder is optimized to recon-
struct the graph structure and the edge textual content following
the objective function Eq (9), indicated by the fourth right arrows.

4 EVALUATION
We evaluate the proposed CGAT model on two real-world graph
datasets, Yelp and StackOverflow, which provide a wealth of edge
text content. A comparative evaluation against a wide variety of
graph embedding baselines is performed on the link prediction task
to evaluate the models’ ability in preserving network structure.
We also evaluate the quality of the learned node embeddings in
recovering unseen edge text content. Qualitative analysis maps
user and topic embeddings to a 2-D space, which demonstrates the
improved descriptive power gained from modeling edge textual
semantics in CGAT. Finally, a comprehensive case study illustrates
hierarchical effect of the semantic channels across different layers
for graph embedding learning.

4.1 Experiment Settings
• Datasets.We utilized two large publicly available graph datasets
associated with rich edge text content for evaluation. 1) Yelp2 is a
bipartite graph between users and items, where 10,192 user nodes

2Yelp dataset challenge. https://www.yelp.com/dataset
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and 7,694 restaurant item nodes are connected by 641,938 review
documents (one review per edge). In average, the node degree is
60.02, and the number of words per review is 24.09. 2) StackOver-
flow3 is a social network with 19,016 user nodes, together with
297,238 discussion posts. We utilize the “reply-to” interaction in
the discussion thread to construct edges between two user nodes,
and each interaction attaches one post on the edge. This relation
suggests implicit social connections among users based on their
expertise and technical interest. In average, the node degree is 15.46,
and the number of posts per edge is 1.09 with 22.14 words per post.

On each dataset, we construct its vocabulary containing 2,500
unigram and bigram text features selected by Document Frequency.
The node features are constructed by aggregating the bag of words
from all documents related to each node. This creates a fair com-
parison for baselines that do not model edge content, and the per-
formance difference can then be attributed to the design of content
modeling on edges. We randomly split the edges linked with each
node into 5 folds for cross validation in all the reported experiments.
• Baselines. The proposed CGAT is compared against a wide va-
riety of graph embedding models: 1) GraphSage [17] uniformly
passes information through edges without utilizing node and edge
content or features to attend neighboring nodes. 2) GAT [30] in-
corporates node content to reweigh neighboring nodes, and aggre-
gates information from neighbors via a self-attention mechanism.
4)MNE [34] utilizes edge type information by constructing node
embedding from one base embedding and a set of auxiliary em-
beddings for each type of relation. 5) GATNE [8] also considers
edge type and generalizes MNE to the information aggregation
framework by self-attention. 3) EAGCN [14] directly multiplies
general edge feature vectors with the self-attention coefficients to
attend neighbors for each feature on edges.

These models vary in how they model edge content. GraphSage
and GAT do not consider edge content at all. MNE and GATNE
model multi-relational graphs where nodes are connected by mul-
tiple types of edges. And they require the edge type to be given.
Adapting to our scenario, each edge is assigned with the topic of the
largest probability by a pre-trained topic model [5]. Consequently,
MNE and GATNE become two-step solutions that model edge text
content by a separate model, while our method jointly learns topics
and optimizes node embeddings end-to-end. EAGCN incorporates
bag-of-word edge feature vectors, but fails to explicitly model the
semantic information underlying text (e.g., topics as CGAT does).

To demonstrate the effectiveness of each component in CGAT,
we also construct two variants of it by disabling one component
at a time: 1) CGAT-Cnv removes the convolutional aggregation
layers (indicated by the blue arrows in Figure 4), and learns the
node embeddings by joint topic and graph structure modeling. 2)
CGAT-Atn omits the channel-aware attention layer and uniformly
passes information from neighbors, which is essentially a rigid
combination of GraphSage and a VAE-based topic model.

To evaluate model’s predictive power on text content, we also
compare with the classic topic model, LDA [5], which uses a global
Dirichlet prior to model the topic distribution in all documents.
We also compared with AVITM [27] which uses autoencoding
variational Bayes to approximate the posterior distribution of LDA.

3StackOverflow. http://stackoverflow.com

•Details of experiment setup.All GCN-basedmodels are trained
in a minibatch manner following [17] with 𝐿 = 2 layers. For each
node in a batch, a fixed number of neighbors and non-neighbors
are sampled. We set neighborhood sample size to 𝑆1 = 25 and
𝑆2 = 10 for layer 1 and 2 respectively, and non-neighborhood size
to 𝑆1 = 𝑆2 = 20 for both layers, along with all corresponding
edge text documents. The embedding size is set to 𝑚1 = 𝑚2 =

128 across all layers for all models. The number of channels is
set to 𝐾 = 15 by default. The per-batch complexity of CGAT is
𝑂 (∑𝐿

𝑙=1 𝐾𝑆𝑙𝑚𝑙−1𝑚𝑙 +𝐾𝐷 (𝑚𝑙−1 + |V| +𝐾)), where 𝐷 is the largest
number of document per edge and |V| is the size of vocabulary.
The complexity of EAGCN, which also models edge content, is
𝑂 (∑𝐿

𝑙=1 𝐾
′𝑆𝑙𝑚𝑙𝑚𝑙−1), where 𝐾 ′ is the dimension of edge feature

and 𝐾 ′ = |V| in our case. This shows the efficiency of modeling
topic on edge compared with feeding in raw text features. Both
source code and our evaluation datasets are made available 4.

4.2 Link Prediction
Link prediction is a widely used task to evaluate the quality of
learnt node representations. The link between two nodes is pre-
dicted based on the similarity between their embeddings, which
formulates the task as a ranking problem to retrieve the most rel-
evant nodes. Each time we held out one fold of edges and the
associated text documents as the testing set, and utilized the re-
maining graph for model training. To construct a candidate set for
ranking, we randomly selected negative edges (irrelevant nodes)
with an equal number of observed positive edges for each testing
node. The quality of ranking is measured by three metrics: mean
average precision (MAP), normalized discounted cumulative gain
(NDCG) and scaled mean reciprocal rank (MRR) which introduces a
scaling factor 𝛿 for large candidate pool following [33]. We set the
scaling factor to 5 and 1 for Yelp and StackOverflow respectively,
since Yelp has a larger candidate pool due to its denser connectivity.

To better analyze the utility of the finer-grained information
aggregation introduced in CGAT, we report the prediction perfor-
mance on nodes with different structural properties. Specifically, we
separate the testing nodes into three groups by their normalized de-
gree centrality 𝑐 , which measures the popularity of nodes. A larger
𝑐 means the node is more popular and central in the graph; on the
contrary, a node with a smaller 𝑐 is less active. Since information
passes through edges in GCN-based models, 𝑐 also indicates the
density of information exchange on different nodes. We categorize
nodes as light, medium and heavy by the corresponding thresh-
olds of 𝑐 . In Yelp, since the nodes are more densely connected, the
threshold of 𝑐 is set to 0.001 and 0.01, while in StackOverflow, it is
set as 0.0005 and 0.005 accordingly.

The prediction performance of all models on the two datasets is
summarized in Table 1 and Table 2 respectively, where CGAT consis-
tently achieved the best performance on both datasets. Comparing
vertically across baselines, we can observe the significance of utiliz-
ing edge text content for fine-grain information aggregation. The
structure-only method GraphSage performed worse than GATNE
and EAGCN, because it cannot utilize edge content to differenti-
ate neighboring nodes. CGAT further outperformed these content-
enhanced models, which proves the effectiveness of jointly learning

4CGAT. https://github.com/Louise-LuLin/topic-gcn
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Table 1: The performance comparison of link prediction on Yelp under different metrics and node groups.

Models Light User (𝑐 < 0.001) Medium User (0.001 ≤ 𝑐 ≤ 0.01) Heavy User (𝑐 > 0.01)
MAP MRR NDCG MAP MRR NDCG MAP MRR NDCG

GraphSage 0.653 ± 0.023 0.472 ± 0.026 0.796 ± 0.016 0.672 ± 0.025 0.487 ± 0.029 0.814 ± 0.014 0.689 ± 0.020 0.497 ± 0.025 0.822 ± 0.015
GAT 0.684 ± 0.025 0.489 ± 0.027 0.812 ± 0.015 0.700 ± 0.024 0.505 ± 0.031 0.833 ± 0.013 0.731 ± 0.025 0.522 ± 0.030 0.841 ± 0.013
MNE 0.577 ± 0.044 0.398 ± 0.046 0.719 ± 0.029 0.622 ± 0.042 0.413 ± 0.045 0.742 ± 0.028 0.634 ± 0.040 0.429 ± 0.042 0.751 ± 0.027
GATNE 0.669 ± 0.030 0.478 ± 0.028 0.805 ± 0.019 0.687 ± 0.027 0.494 ± 0.029 0.825 ± 0.018 0.707 ± 0.025 0.508 ± 0.028 0.834 ± 0.017
EAGCN 0.695 ± 0.024 0.506 ± 0.025 0.827 ± 0.016 0.714 ± 0.025 0.518 ± 0.027 0.845 ± 0.015 0.749 ± 0.023 0.540 ± 0.027 0.858 ± 0.015
CGAT 0.728±0.022 0.527±0.024 0.849±0.016 0.736±0.024 0.543±0.027 0.869±0.016 0.772±0.024 0.564±0.027 0.882±0.014
CGAT-Cnv 0.626 ± 0.032 0.441 ± 0.033 0.763 ± 0.024 0.649 ± 0.030 0.458 ± 0.032 0.788 ± 0.023 0.672 ± 0.029 0.472 ± 0.029 0.796 ± 0.022
CGAT-Atn 0.677 ± 0.024 0.485 ± 0.026 0.811 ± 0.016 0.698 ± 0.025 0.502 ± 0.029 0.834 ± 0.018 0.726 ± 0.026 0.520 ± 0.029 0.838 ± 0.016

Table 2: The performance comparison of link prediction on StackOverflow under different metrics and node groups.

Models Light User (𝑐 < 0.0005) Medium User (0.0005 ≤ 𝑐 ≤ 0.005) Heavy User (𝑐 > 0.005)
MAP MRR NDCG MAP MRR NDCG MAP MRR NDCG

GraphSage 0.721 ± 0.042 0.286 ± 0.041 0.820 ± 0.022 0.733 ± 0.036 0.297 ± 0.031 0.838 ± 0.019 0.744 ± 0.033 0.312 ± 0.029 0.852 ± 0.018
GAT 0.738 ± 0.039 0.298 ± 0.040 0.834 ± 0.021 0.748 ± 0.036 0.307 ± 0.036 0.851 ± 0.019 0.763 ± 0.031 0.327 ± 0.030 0.870 ± 0.019
MNE 0.645 ± 0.056 0.210 ± 0.057 0.745 ± 0.034 0.679 ± 0.051 0.225 ± 0.053 0.772 ± 0.033 0.701 ± 0.048 0.251 ± 0.045 0.788 ± 0.030
GATNE 0.725 ± 0.040 0.291 ± 0.044 0.828 ± 0.026 0.742 ± 0.042 0.303 ± 0.411 0.848 ± 0.253 0.756 ± 0.039 0.322 ± 0.036 0.867 ± 0.023
EAGCN 0.740 ± 0.040 0.302 ± 0.041 0.841 ± 0.021 0.757 ± 0.037 0.318 ± 0.034 0.861 ± 0.020 0.772 ± 0.030 0.337 ± 0.030 0.872 ± 0.020
CGAT 0.759±0.038 0.322±0.039 0.859±0.020 0.771±0.036 0.334±0.035 0.878±0.020 0.793±0.032 0.358±0.027 0.897±0.018
CGAT-Cnv 0.691 ± 0.041 0.242 ± 0.044 0.792 ± 0.027 0.706 ± 0.034 0.274 ± 0.039 0.808 ± 0.232 0.725 ± 0.030 0.284 ± 0.031 0.822 ± 0.023
CGAT-Atn 0.746 ± 0.038 0.305 ± 0.037 0.844 ± 0.022 0.753 ± 0.038 0.314 ± 0.036 0.857 ± 0.022 0.776 ± 0.030 0.341 ± 0.028 0.879 ± 0.017

latent semantics and structural embeddings from content-enriched
edges. CGAT-Atn, combining graph structure and edge content
without attentionmechanism, is distinctly worse than CGAT, which
proves the importance of our channel-aware attention layer. The
advance of convolution operation is also clearly observed in this
experiment: MNE without the convolution layers was largely worse
than GATNE, even if they utilized the same information in graph;
CGAT-Cnv which disables the convolution operation performed
even worse than the baselines without using edge content.

When comparing horizontally across different groups of nodes,
we can observe a larger performance gap on heavy nodes between
CGAT and the baselines that do not use edge content, i.e., Graph-
Sage and GAT. This seems to be counter-intuitive, since incorpo-
rating edge content is expected to help more on sparse nodes with
less structural information. On the contrary, better performance on
heavy nodes exactly aligns with our proposed principle of utilizing
edge content to differentiate the influence from neighbors. Heavy
nodes tend to connect with a variety of neighbors with distinct topi-
cal interests; therefore, aggregating information uniformly without
differentiating their semantic relatedness would result in inaccurate
embeddings. The elaborated design of the channel-aware attention
layer in CGAT addresses this issue by attending on different seman-
tics inferred from edge content, such that the embeddings can be
structurally and semantically separated.

4.3 Content Prediction
Recall that the node embeddings learned by CGAT can be projected
to the topic space by Φ · (𝑢𝑖 +𝑢 𝑗 ), which can serve for content predic-
tion on the predicted links, e.g., what content might be generated
once this link is established. We compared CGAT with topic models

Figure 5: Perplexity comparison on Yelp and StackOverflow.

by their perplexity on the held-out edge text documents. Formally,
the perplexity for a set of documents is calculated as follows [5]:

𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (D𝑡𝑒𝑠𝑡 ) = exp
(
−
∑
𝑑∈D𝑡𝑒𝑠𝑡

log𝑝 (𝒘𝑑 )∑
𝑑∈D𝑡𝑒𝑠𝑡

|𝒘𝑑 |

)
where 𝑝 (𝒘𝑑 ) is the likelihood of document 𝑑 given by the model. A
lower perplexity indicates a better content generation quality.

Figure 5 reports the mean and variance of perplexity from 5-fold
cross validation over different topic size 𝐾 . On each dataset, we
again summarize the comparisons with respect to light and heavy
nodes. CGAT achieved comparable performance with the original
LDA model with Dirichlet prior. And it consistently outperformed
AVITM that uses a similar variational autoencoder for posterior
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Figure 6: Visualization of the learnt node embeddings on Yelp (left) and StackOverflow (right). Node color denotes the topic
that this node (i.e., user) is closest to in the projected topic space. The word cloud shows the most representative words of the
topic with the same color.

inference but with a global prior for topic distribution across all
documents. CGAT uses node embeddings pertaining to each edge
to infer its prior topic distribution, which provides local context on
a per-edge basis. This leads to its improved content prediction on
the edges. This also proves the learned node embeddings preserve
semantic relatedness among nodes, which leads to its potential for
an interpretable link prediction. Moreover, CGAT demonstrates
stable performance with respect to different topic sizes, which
verifies the benefit of jointly modeling topics with graph structure.

4.4 Visualization of Node Embeddings
To analyze the quality, especially the inferred semantics, of the
learned node embeddings by CGAT, we visualize its embeddings in
a 2-D space using the t-SNE algorithm in Figure 6. For illustration
purpose, we assign each node to its closest topic, i.e., arg max𝑘 (𝜙𝑘 ·
𝑢); and we mark nodes sharing the same interested topic with the
same color. We also plot the most representative words under each
topic in 𝑝 (𝑤 |𝛽𝑧) learned from CGAT with the same color of the
corresponding set of nodes.

We can observe on both datasets that nodes sharing similar
topical interests are closely clustered, which verifies the realization
of the proposed principle: semantically similar nodes should be
closer in the embedding space. Meanwhile, we can easily interpret
the semantic meaning of each embedded node using the jointly
learned topics. On Yelp, it is rather direct to distinguish different
user groups’ preferred cuisine types: e.g., Italian (in purple) v.s.,
Mexican (in blue); similarly on StackOverflow, we can recognize
users’ expertise in programming: e.g., network communication (in
brown), v.s., interface design (in red). Another interesting finding
is that the distance between nodes characterizes the relatedness
between topics. For example on StackOverflow, users interested
in network communication (in brown) are closer to those who
focus on multithreading (in purple), than those on dataframes (in
pink); and on Yelp, users preferring Japanese food (in brown) get
closer to those who prefer Thai food (in red) than those in favor
of Mexican food (in blue). This again demonstrates that jointly
learning topics with node embeddings on top of a graph structure
not only introduces semantic meaning into the learnt embeddings,
but also preserves structural information of the graph, such that
topics manifested by connected nodes tend to be more related.

4.5 Case Study about Inferred Attention
Finally, we use a case study in Figure 7 to visualize the computations
in channel-aware attention layer for a deeper understanding of it.
We zoom into several nodes and edges chosen from the Yelp and
StackOverflow graphs respectively. Each node is tied with the topic
distribution given by Φ ·𝑢, and is colored by the topic of the largest
probability. Recall that we stacked 𝐿 = 2 layers and both layers are
used to reconstruct the edge text content; and thus we visualize
both sets of inferred channel bandwidths on each edge: the upper
illustration Λ(2) is for the output layer, and the lower one Λ(1) is
for the first aggregation layer. Meanwhile, we select two edges from
each graph and excerpt the ground truth text content. The color
denotes the topic from which the word is generated.

The semantic relatedness between edge and connected nodes is
quite consistent. If we look at each pair of connected nodes, we can
find dominant channels on the edges, which pass more information
for corresponding topics, and take major parts in forming embed-
dings for the end nodes. For example on Yelp, user𝑢1 and item 𝑖1 are
connected and channel Thai has the largest bandwidth for informa-
tion passing, and thus when aggregating neighbors’ states for user
𝑢1, item 𝑖𝑖 mostly influences𝑢1 on topic𝑇ℎ𝑎𝑖; similarly,𝑢2 and 𝑖2 ex-
change more information through the major channel Taco. The text
content on edges (𝑢1, 𝑖1) and (𝑢2, 𝑖2) illustrates the dominant topics,
which verifies the learned channel. A more interesting observation
is that though the channel bandwidths on different layers show
a similar distribution, they represent different levels of semantic
relatedness between nodes. For each edge, the bandwidths of the
first layer (i.e., Λ(1) ) presents a steeper shape with more emphasis
on those dominant topical channels; while the upper one for the
output layer Λ(2) demonstrates a flatter shape over all channels in
general. This indicates that the convolution operation aggregating
neighbors’ information may produce a community-level embed-
ding for the second layer, which can result in more general channel
bandwidths with less individuality.

5 CONCLUSION AND FUTUREWORK
In this paper, we enhanced graph representation learning by uti-
lizing the latent semantic information carried in edge content. We
proposed a unified graph autoencoder framework named CGAT to
profile each edge as a mixture of semantic-driven channels inferred
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Figure 7: (Left) A case study of how information is passed through topical channels on Yelp and StackOverflow. Each node is
attached with a topic distribution Φ · 𝑢. Each edge is tied with two sets of channel bandwidths: Λ(1) for the first layer (shaded)
is beneath Λ(2) for the output layer. (Right) Two example edges for each graph with excerpted ground-truth text content.

from edge text content, and guide information aggregation via a
channel-aware attention mechanism. The learned node embeddings
are demonstrated to be predictive and interpretable.

As our future exploration, we are especially interested in the
community effect of convolution operation shown in our case study.
At the upper level convolution layers, the information is aggregated
from farther neighbors which results in node representations en-
coding both individual- and community-level information. It is
necessary to explore such a hierarchical structure for multi-level
interpretability of learnt representations. Moreover, currently we
take a static view of the graph structure and edge content, i.e., the
graph is considered as static and fixed. Given the graph is forever
evolving, so is its edge content, it is important for us to extend
CGAT to model the dynamics on graph, both structure and edge
content. This gives us a new opportunity to understand graph data
more deeply.

ACKNOWLEDGMENTS
This paper is based upon work supported by the National Science
Foundation under grant IIS-1553568 and IIS-1718216.

REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alexander A Alemi. 2018.

Watch your step: Learning node embeddings via graph attention. In NeurIPS.
9180–9190.

[2] Charu C Aggarwal, Haixun Wang, et al. 2010. Managing and mining graph data.
Vol. 40. Springer.

[3] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convolu-
tional matrix completion. arXiv preprint arXiv:1706.02263 (2017).

[4] Smriti Bhagat, Graham Cormode, and S Muthukrishnan. 2011. Node classification
in social networks. In Social network data analytics. Springer, 115–148.

[5] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.
Journal of machine Learning research 3, Jan (2003), 993–1022.

[6] Joan Bruna,Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral net-
works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203
(2013).

[7] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-
prehensive survey of graph embedding: Problems, techniques, and applications.
TKDE 30, 9 (2018), 1616–1637.

[8] Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, and Jie Tang.
2019. Representation learning for attributed multiplex heterogeneous network.
In SIGKDD. 1358–1368.

[9] Pengfei Chen, Weiwen Liu, Chang-Yu Hsieh, Guangyong Chen, and Shengyu
Zhang. 2019. Utilizing edge features in graph neural networks via variational
information maximization. arXiv preprint arXiv:1906.05488 (2019).

[10] Robert B Cialdini and Noah J Goldstein. 2004. Social influence: Compliance and
conformity. Annu. Rev. Psychol. 55 (2004), 591–621.

[11] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In NeurIPS.
3844–3852.

[12] Frederik Diehl. 2019. Edge Contraction Pooling for Graph Neural Networks.
arXiv preprint arXiv:1905.10990 (2019).

[13] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In ICML. JMLR. org,
1263–1272.

[14] Liyu Gong and Qiang Cheng. 2019. Exploiting Edge Features for Graph Neural
Networks. In CVPR. 9211–9219.

[15] Lin Gong, Lu Lin, Weihao Song, and Hongning Wang. 2020. JNET: Learning User
Representations via Joint Network Embedding and Topic Embedding. In WSDM.
205–213.

[16] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In SIGKDD. 855–864.

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1024–1034.

[18] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[19] Diederik P Kingma, Max Welling, et al. 2019. An introduction to variational
autoencoders. Foundations and Trends® inMachine Learning 12, 4 (2019), 307–392.

[20] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[21] Lu Lin, Lin Gong, and Hongning Wang. 2019. Learning Personalized Topical
Compositions with Item Response Theory. InWSDM. 609–617.

[22] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:
Homophily in social networks. Annual review of sociology 27, 1 (2001), 415–444.

[23] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. 2017. Motifs in temporal
networks. InWSDM. 601–610.

[24] Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches
and evaluation methods. Semantic web 8, 3 (2017), 489–508.

[25] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In SIGKDD. 701–710.

[26] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In ESWC. Springer, 593–607.

[27] Akash Srivastava and Charles Sutton. 2017. Autoencoding variational inference
for topic models. arXiv preprint arXiv:1703.01488 (2017).

[28] Ben Taskar, Ming-Fai Wong, Pieter Abbeel, and Daphne Koller. 2004. Link
prediction in relational data. In NeurIPS. 659–666.

[29] Cunchao Tu, Han Liu, Zhiyuan Liu, andMaosong Sun. 2017. Cane: Context-aware
network embedding for relation modeling. In ACL. 1722–1731.

[30] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[31] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
graph embedding by translating on hyperplanes. In AAAI.

[32] Carl Yang, Jieyu Zhang, Haonan Wang, Sha Li, Myungwan Kim, Matt Walker,
Yiou Xiao, and Jiawei Han. 2020. Relation Learning on Social Networks with
Multi-Modal Graph Edge Variational Autoencoders. InWSDM. 699–707.

[33] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In SIGKDD. 974–983.

[34] Hongming Zhang, Liwei Qiu, Lingling Yi, and Yangqiu Song. 2018. Scalable
Multiplex Network Embedding. In IJCAI, Vol. 18. 3082–3088.

Research Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

1827


	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Channel-aware Attention Layer
	3.2 Channel Modeling
	3.3 Model Objective
	3.4 Summary of Model Architecture

	4 Evaluation
	4.1 Experiment Settings
	4.2 Link Prediction
	4.3 Content Prediction
	4.4 Visualization of Node Embeddings
	4.5 Case Study about Inferred Attention

	5 Conclusion and Future Work
	Acknowledgments
	References


 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: all pages
     Mask co-ordinates: Horizontal, vertical offset 31.19, 720.95 Width 539.84 Height 19.93 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         1
         AllDoc
         11
              

       CurrentAVDoc
          

     31.1948 720.9451 539.8438 19.93 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     8
     9
     8
     9
      

   1
  

 HistoryList_V1
 qi2base





