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ABSTRACT
As Internet of Things (IoT) has emerged as the next logical stage
of the Internet, it has become imperative to understand the vulner-
abilities of the IoT systems when supporting diverse applications.
Because machine learning has been applied in many IoT systems,
the security implications of machine learning need to be studied fol-
lowing an adversarial machine learning approach. In this paper, we
propose an adversarial machine learning based partial-model attack
in the data fusion/aggregation process of IoT by only controlling
a small part of the sensing devices. Our numerical results demon-
strate the feasibility of this attack to disrupt the decision making
in data fusion with limited control of IoT devices, e.g., the attack
success rate reaches 83% when the adversary tampers with only 8
out of 20 IoT devices. These results show that the machine learning
engine of IoT system is highly vulnerable to attacks even when
the adversary manipulates a small portion of IoT devices, and the
outcome of these attacks severely disrupts IoT system operations.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security; •

Networks → Network reliability.
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1 INTRODUCTION
Internet of Things (IoT) is cast as a system of networked devices
embedded with sensors to gather and interchange data, and execute
complex tasks [1–3]. As technology is advancing from web2 (social
networking web) to web3 (ubiquitous computing web), IoT, as an
extension of Internet into the physical world, becomes the core
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technology to connect sensors and actuators into an integrated
network [4–6]. Applications of IoT include but are not limited to
smart home, smart warehouse, vehicular networks, environmental
monitoring, and perimeter security [3].

Wireless Sensor Network (WSN) is often considered as the build-
ing block for the IoT systems. However, the sensing devices in
IoT are prone to failures [2]. While information exchange among
heterogeneous sensing devices/actuators and hubs/data centers is
mandatory, many applications of IoT have strict timing, security,
reliability requirements. Therefore, how to ensure the real infor-
mation sensed by sensors/actuators to be securely received by the
hub/data center in a wireless environment is critical for both the
security and reliability of the IoT systems.

As the scale of IoT systems grows rapidly with more devices
added, machine learning has started playing a key role in the pro-
cessing and learning from large-scale data generated by IoT devices
[7]. While machine learning helps with efficient operation of IoT
systems, the other side of the coin is concerning adversaries may
also employ machine learning as powerful means to launch attacks
against IoT infrastructures. The study of machine learning under
adversaries is referred to as adversarial machine learning [8].

In this paper, we focus on the security of data fusion/aggregation
process in IoT. Original data or information is collected through
IoT devices such as actuators, RFID, switches, and sensors. Then
multiple IoT devices report their data to a hub or data center to
aggregate and report the aggregated results to the cloud or data
analysis center. In this paper, we consider a scenario where multiple
devices report their data to a fusion center, and the fusion center
makes a binary decision based on the received information. In this
scenario, we show that the adversary can employ machine learning
techniques to launch an attack by controlling only a small part of
the devices, which we call the partial-model attack.

The main contributions of this paper are listed as: (i) We intro-
duce a machine learning based partial-model attack in IoT data
fusion process, where the adversary aims to disrupt decision mak-
ing of IoT data fusion process by taking advantage of the IoT device
properties; (ii) We present numerical experiments to validate the
proposed attack framework and demonstrate that the successful
attack ratio is high even when a small portion of sensors are con-
trolled by the adversary. For instance, in a scenario where 8 out of
20 devices are controlled by an adversary, the hit ratio reaches up to
83%; (iii) We discuss potential ways of defending against machine
learning based partial-model attack in IoT systems.
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2 BACKGROUND AND RELATED WORK
2.1 IoT architecture
IoT finds rich applications including but not limited to Industrial
Internet of Things (IIoT), smart home, smart city, healthcare, and
transportation. Basic components that enable the IoT benefits in-
clude: (i) hardware (heterogeneous sensors and actuators); (ii) mid-
dleware (data aggregation/fusion center and storage devices); (iii)
presentation (visualization and other analysis tools that enable ac-
cess to different platforms) [2, 9, 10].

Radio Frequency Identification (RFID) is a major source of data
for many IoT systems [11, 12]. It is a technology that employs elec-
tromagnetic fields for data transfer and automatic object detection.
With the RFID tag, items can be detected by reading their labels.
Once sensor data is collected, the next step is to transfer data for
storage and processing. Cloud computing is the storage and com-
puting center of IoT, where data analytics are based on. Users can
access the cloud computing and generate visual presentation of
the collected data [13]. Moreover, cloud platforms provide device
lifecycle management for IoT and can provide digital twin version
of real systems [14].

We illustrate the general architecture of IoT systems in Fig 1 as
three layers: IoT things (physical devices), IoT network, and IoT cloud
and application. The bottom layer consists of the physical devices,
the second layer focuses on the infrastructure such as network and
data aggregation, the last (highest) layer is the user-oriented layer.

Sensors, Actuators, devices etc.

WSN, Fog/edge computing, 

pre-processing, aggregation etc.

Visualization, representation,

 analytics etc.

IoT Cloud 

& Application

IoT Network

IoT Things

Figure 1: The generalized layers of typical IoT systems.

2.2 Adversarial machine learning and IoT
Machine learning, especially deep learning, has attracted tremen-
dous attention since its successful application in image recognition
[15]. Recently, deep learning has started finding applications also
in wireless systems, including waveform design, signal analysis
and security [16]. Devices within an IoT system often generate
data continuously and simultaneously at high rates. To deal with
this large-scale data, machine learning offers automated means to
process and analyze data, and make decisions [2]. Unlike traditional
statistical models, machine learning provides a way to learn pa-
rameters from the data, and it can make decisions based on both
historical data and real time streaming data. Besides, given the
heterogeneity of IoT systems, machine learning can be performed
in either central or distributed fashion.

Despite its strengths, machine learning itself has many vulner-
abilities that might be exploited by malicious users [17, 18]. The
security problem of IoT systems are critical for both the users and
owners of IoT infrastructure. Machine learning in the presence of

adversaries is studied under the emerging area of adversarial ma-
chine learning [8, 17–19, 22]. The shared nature of wireless medium
makes machine learning especially vulnerable to various attacks
built upon adversarial machine learning. In wireless domain, adver-
sarial machine learning has been applied to launch different types
of attacks [21], including inference (exploratory) attack [20, 23],
evasion attack [24–27], poisoning (causative) attack [27–29], Trojan
attack [30], and spoofing attack [31]. These attacks are stealthier
(more difficult to detect) and operate with lower footprint com-
pared with conventional wireless attacks such as a jamming [32].
Adversarial learning can also be used to augment training data with
synthetic data samples [33].

Security of IoT has drawn increasing attention. Many of the
security studies of IoT are centered around two fronts [34]: sensing
end-devices and connecting protocols. Strategies such as improving
security through firewall and mobility policies have been presented
in [35]. Intrusion detection mechanisms formulated as anomaly
detection have been discussed for IoT systems in [36]. The privacy
issues of IoT have been considered in [37].

Major security vulnerabilities and challenges of IoT can be sum-
marized as follows [14]:

• Sub-system heterogeneity: Devices, sensors, actuators and
sub-controlling components within IoT systems are hetero-
geneous. Thus, it is challenging to integrate them into one
system, and security measures required for different sub-
systems might also differ from each other. It is necessary
to find a common strategy to control all the heterogeneous
sub-systems.

• End-device reliability: End-devices of IoT systems are dis-
tributed in real world and they can be influenced by various
environmental factors that may cause them to fail to func-
tion, report wrong sensing results, or even lose control to
malicious users. How to ensure the reliability of the end-
devices is critical to the security of IoT.

• Data security: Data security in IoT systems involves multiple
concerns such as safe transmission (how to guard the sensed
information such that it can be safely transferred to the
cloud/processing center) and safe operation of data center.

Our paper aims to employ adversarial machine learning tech-
niques to launch attacks against the IoT data fusion process. The
adversary first learns a machine learning model and then based on
the learned model it crafts adversarial inputs. Detailed information
on this attack is given in the next section.

3 ADVERSARIAL MACHINE
LEARNING-BASED PARTIAL-MODEL
ATTACK

3.1 IoT data fusion
Data gathering frommultiple devices is a critical step in IoT systems.
Compared with making decisions from a single data source, collect-
ing data from multiple sensing devices may help filter out noises
and other deviations [38]. The requirements of IoT data fusion are
summarized as follows [39]: (i) Context-aware: It is necessary to
support adaptive and flexible services. The context information
like location, weather and other environmental factors may change.
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Thus, data fusion at IoT systems needs to calibrate and adapt to
these changes. (ii) Privacy preserving: It is necessary to protect
privacy of sensitive IoT information such as personal habits or in-
dustrial secrets. (iii) Reliable: It is necessary to detect, remove or
replace unreliable devices, as the sensed information may be noisy
or contaminated. (iv) Real time: It is necessary to make timely deci-
sions to support real-time operations of data fusion. (v) Verifiable:
It is necessary to keep the fusion result verifiable to the user or
public.

IoT devices

IoT Cloud

IoT fusion center

Figure 2: The simplified sensing and decision model of IoT.

In this paper, we consider a general scenario of IoT data fusion
as shown in Fig.2. Multiple IoT devices report their collected infor-
mation to a data fusion center, and the data fusion center makes a
decision (classification or regression), and then transfers the deci-
sion output to the IoT cloud for further analysis.

3.2 Partial-model attack
The sensing devices play a key role in IoT systems. Therefore, secure
and efficient communication between sensing devices and the data
fusion center is needed to support IoT operations. However, sensing
devices are prone to failures and manipulation by adversaries. We
propose an adversarial machine learning based attack model as
follows. We assume that the adversary controls a small number of
IoT devices, and the adversary knows the decision output of the
IoT fusion center. However, the adversary has no knowledge about
the decision process in the IoT fusion center. Data is exchanged
between the IoT devices fusion center and other edge computing
center over wireless channels. Thus, it is possible for the adversary
to hijack the over-the-air transferred information.

We assume that there are n IoT sensing devices that report their
information to the IoT data fusion center to aggregate and output a
decision. In the meantime,m of these devices are controlled by a
malicious adversary. By controlling a small portion of IoT devices
based on machine learning techniques, the adversary aims to take
advantage of the failures of other normal/un-manipulated sensing
nodes, further flip or change the decision output significantly. One
application is spectrum sensing data falsification by some rogue
nodes in cooperative spectrum sensing [29, 40]. As IoT devices may
fail or report confused information, the adversary can detect this
kind of uncertainty and further take advantage of this uncertainty
to expand the impact of the attack.

For a successful attack, the adversary first needs to learn about
the potential true decision/classification output in the IoT fusion

center from controlled IoT sensing devices and historical deci-
sion/classification output. Therefore, the adversary needs to build
first a machine learning model to infer the potential decision state
based on the information collected from controlled IoT sensing
devices. For the attack model, the inputs come from the sensing
results of controlled devices. The output are the adversarial vectors
crafted from the inputs.

The next question is when to launch the attack. In our pro-
posed partial-model attack, the adversary does not launch the at-
tack at each round of inputs. The attack should be launched when
controlled devices sensed possible confused signals, i.e., when the
learned decision model by the adversary is less certain about the
decision. Consider a convolutional neural network (shown in Fig.4),
in which feature vectors are served as inputs of the framework. The
next layers are the convolutional layers, which consist of convolu-
tional and pooling operations. The main objective of the convolu-
tional layers is to extract more complicated features (e.g., silhouettes
in image recognition). The fully connected layers follow the con-
volutional layers and aim to find the optimal combination of the
previous features. The last layer of the framework is named as
SoftMax layer. The number of neurons in the SoftMax layer is equal
to the output classes.

The value in SoftMax layer is considered as “confidence value”
and reflects how “confident” the trainedmodel is towards the output
[41]. Therefore, we employ the largest value of the neuron output
in the SoftMax layer, which is also the value of the final decision
output for the model, as an indication about the certainty of des.
The output value of the SoftMax layer is the result of a squashing
function, which limits the output within the range between 0 and
1. Mathematically the standard SoftMax function is defined as:
σ (zi ) =

ezi∑c
j=1 e

zj , in which σ (zi ) is the output, or confidence value
of the final decision towards the ith class. c is the total number of
output classes. Each output value in the SoftMax layer gives the
“confidence” of the decision output towards each class [41]. When
the confidence value is beyond a certain threshold, malicious inputs
are generated and sent to the IoT data fusion center, otherwise
normal data are sent to avoid being detected.

After the learning step, the adversary infers the potential true
decision output. Then through manipulating the information of
controlled IoT devices sent to the IoT data fusion center, the adver-
sary has the possibility to compromise the IoT data fusion center.
There are different ways to craft malicious inputs (a.k.a. adversarial
inputs) for the controlled IoT sensing devices as shown in[17, 18].
The basic idea of crafting adversarial inputs is to move the input
towards the decision boundary of the learned classification model
such that the modification is minimized.

The overall attack framework is shown in Fig.3. Normal IoT
devices report the collected data directly to the IoT fusion center,
while manipulated IoT devices need to report the collected infor-
mation to the adversary. The adversary first learns an attack model
and then in later rounds decides whether to launch attack, or not.
When the adversary launches the attack, it reports the manipulated
inputs to the IoT fusion center, otherwise it reports the original
data. The proposed partial-model attack is not a mathematically
guaranteed attack. The key for this attack to succeed depends on
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Manipulated IoT devices

IoT Cloud

IoT fusion center

Normal IoT devices

Attack model Manipulated inputs

Decision outputs

Decision outputs

Figure 3: The machine learning based partial-model attack in IoT.

Input Output

Softmax layer

Convolution layers Fully connected layers

Figure 4: A typical convolutional neural network.

the overall uncertainty among IoT devices. In the next section, we
present simulation results to evaluate the proposed attack.

4 EXPERIMENTATION AND ANALYSIS
We conduct detailed simulations of the IoT data fusion process and
analyze the performance of the partial-model attack in this section.

4.1 Experimental configurations
The IoT fusion center in our attack model collects information from
a set of sensing devices, aggregates them to make a decision and
delivers the decision to the IoT cloud for further data analysis. In
our simulation, the decision model in the IoT data fusion center
is set as a binary classification model as many sensing tasks are
binary, such as switches and signal sensing devices. We assume
that there are 20 IoT sensing devices such as RFID. 10000 data
samples are collected from two Gaussian distributions, each of the
distribution corresponds to one class. The first 2000 data samples
serve as training data for the adversary. The remaining data samples
are used for evaluation. To make the simulation consistent with real
environment uncertainties, the mean and deviation of the Gaussian
distribution for each device are set as a random number within a
given range (e.g., to represent the potential differences in oscillators
when spectrum data is sensed). The adversary employs a 5-layer
neural network as the learning model. The implementation of the
learning model is based on TensorFlow.

In the IoT data fusion center, we employ Support Vector Machine
(SVM) as the fusion rule, which is one of the most popular statistical
classification models. It is worth noting that other fusion rules such
as multi-layer perceptron neural network, decision tree, etc. can
also be used as the fusion rule. Due to the limitation of space, we
consider SVM in this paper.

4.2 Attack performance analysis
The performance of the proposed machine learning based partial-
model attack is measured by hit ratio (namely, attack success ratio),
which is defined as:

Hit ratio =
The number of successful attacks
Total number of attack instances

.

The successful attack here corresponds to those input samples that
successfully flip the decision of IoT fusion center that would have
been made when no attack is launched.

We first evaluate the hit ratio by varying the number of controlled
devicesm. The results under different confidence threshold value
of 0.60,0.75 and 0.9, respectively, are shown in Fig.5. The hit ratio
increases with m. In particular, when m is 8, which is less than
half of the total number of devices, n, the hit ratio is 72% while the
confidence threshold value is 0.75. Asm further increases, the hit
ratio approaches to 1. When the threshold is too large, the number
of attacks will decrease dramatically, thus the overall hit ratio will
also decrease.

1 2 3 4 5 6 7 8 9 10 11 12

The number of manipulated devices
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threshold = 0.75
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Figure 5: The relationship of the number of controlled sens-
ing devices with the hit ratio.

Next, we evaluate the relationship between the hit ratio and
the confidence threshold. The results are shown in Table 6. Four
different scenarios when m is 6, 8, 10, or 12 are considered. We
observe that when the confidence threshold is set to near 0.5 (the
confidence threshold is always larger than 0.5 due to our binary
model), the attack success ratio is comparatively lower than the case
when the threshold is set around 0.7. The reason is that when the
learned model is less certain about the decision output, it has higher
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probability that the learned model makes mistakes in inferring the
potential true decision in the IoT data fusion center.

When the threshold is set as 0.7, the hit ratio approaches to
83% whenm = 8. The hit ratio decreases dramatically when the
confidence value increases beyond 0.8. The reason is that when
the threshold is set too high, the number of attacks increases and
thus it becomes difficult for the adversary to take advantage of the
uncertainty of other normal IoT sensing devices.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Confidence value threshold
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0.8
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it
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m=8

m=10

m=12

Figure 6: Hit ratios under different confidence thresholds
and different number of manipulated devices.

Our simulation results demonstrate that the partial-model attack
is likely to succeed when the IoT devices or information exchange
involve uncertainties. The adversary takes advantage of the “uncer-
tainty” of other normal devices and increases its hit ratio. Therefore,
robust security mechanisms are needed in future IoT system design.

5 DISCUSSION
As machine learning provides IoT systems with powerful means of
learning from data and solving complex tasks, it also raises security
concerns due to its vulnerability to adversarial manipulation. Our
proposed adversarial machine learning based partial-model attack
model focuses on the IoT data fusion process and equips the ad-
versary with the capability to launch successful attacks even when
the adversary controls a small part of the IoT devices by exploiting
the performance uncertainty of the IoT devices or the communi-
cation channel. How to counter the proposed attack is our future
work. Below, we provide several potential mechanisms for defense:
Deploying robust anomaly detection mechanism in the IoT fusion
center. This is a direct method to defend the IoT systems against the
partial-model attack. However, in this attack, all the manipulated
devices cooperate with each other to launch the attack. Thus, how
to design an anomaly detection method to detect a set of devices
is a challenge. Improving privacy protection in every level of the IoT
infrastructure. In the partial-model attack, the key to learn a partial
model to mimic the fusion center is the availability of the output
of the fusion center. Thus, the decision information can be kept as
private and secure by deploying a privacy protection mechanism.

Using machine learning to attack the IoT systems is detrimental
to the IoT security. On the other hand, machine learning can be also
employed as a defense method [42]. Therefore, it is important to

understand the interaction of machine learning techniques used for
attack and defense, and game theory can be used as mathematical
means to study the conflict of interest driven by machine learning.

6 CONCLUSION
How to protect the privacy and security of IoT systems from the
data collecting stage to the final visualization and application stage
is essential to the successful adoption of IoT. In this paper, we intro-
duced an adversarial machine learning based partial-model attack
strategy, which mainly sits in the data collecting and aggregating
stage of IoT systems. We use the machine learning based model to
infer the potential decisions or aggregate results and then launch
attacks by manipulating the data of the controlled IoT devices. Sim-
ulations show that the attack is highly successful even with a small
part of manipulated IoT devices.
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