skip to main content
10.1145/3396730.3396738acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiceccConference Proceedingsconference-collections
research-article

Automation of a Valve Manufacturing Process with 7 Mechatronic Stations and a Robotic Arm through a Network of Profibus DP Industrial Protocol with Master-Slave Configuration

Published:29 May 2020Publication History

ABSTRACT

This paper consists of providing an industrial approach to a valve manufacturing system that covers 7 mechatronic stations and a robotic arm, whose connections between each station are conventional point-to-point (PPI) transmissions. To obtain reliable digital and analog data in real-time both at the field and cell level it is essential to use industrial protocols backed by the IEC 61158 standard. For this reason, the Profibus DP (Decentralized Periphery) protocol is optimal for this application as it can transmit data at a greater distance than another communication protocol and high transmission speed, therefore this protocol is still used in most industrial plants in the world. On this occasion, a bus-type topology with master-slave configuration is used for the realization of this document.

References

  1. R. de Veiga Torres, GS Sestito, AL Dias, EA Mossin y D. Brandão, "Simulador de red Profibus DP", 13a Conferencia Internacional IEEE sobre Aplicaciones Industriales (INDUSCON) 2018, São Paulo, Brasil, 2018, pp. 1158--1164.Google ScholarGoogle Scholar
  2. G. Gabor, C. Pintilie, C. Dumitrescu, N. Costica y AT Plesca, "Aplicación del protocolo industrial PROFIBUS-DP", Conferencia y exposición internacional de 2018 sobre ingeniería eléctrica y energética (EPE), Iasi, 2018, pp. 0614--0617.Google ScholarGoogle Scholar
  3. C. Hongjun, Z. Xiaohua, Z. Xuerui, "Aplicación de Profibus a la automatización industrial" en el Centro de Capacitación en Automatización de Siemens Harbin (SA TCH) Departamento de Ingeniería Eléctrica Instituto de Tecnología de Harbin Harbin, PR China, págs. 150001, 1998.Google ScholarGoogle Scholar
  4. Comunicaciones de datos digitales para medición y control. Bus de campo para uso en sistemas de control industrial. Parte 4: Especificación del protocolo de enlace de datos, 1999.Google ScholarGoogle Scholar
  5. M. Alves, E. Tovar, F. Vasques, G. Hammer y K. Rother, "Comunicaciones en tiempo real sobre redes híbridas cableadas / inalámbricas basadas en PROFIBUS", Actas de la 14a Conferencia de Euromicro sobre sistemas en tiempo real. Euromicro RTS 2002, Viena, Austria, 2002, pp. 142--151.Google ScholarGoogle Scholar
  6. Norma PROFIBUS DIN 19245 parte I y II, traducida del alemán, PROFIBUS Nutzerorganisation eV, 1992.Google ScholarGoogle Scholar
  7. EN 50170 - Sistema de comunicación de campo de uso general, CENELEC, 1996.Google ScholarGoogle Scholar
  8. T. Aditya, "Research to study Variable Frequency Drive and its Energy Savings", International Journal of Science and Research (IJSR) India Jaipur-302025 India, vol. 2, no. 6 de junio de 2013.Google ScholarGoogle Scholar
  9. Catalogo No. E86060-A4678-A171-A5-7800, PROFIBUS, Siemens, Germany.Google ScholarGoogle Scholar
  10. A. Dragomir, M. Adam, M. Andruşcă, A. Munteanu, "Estándar PROFIBUS Parte 1 y 2", DIN 19 245 Instituto Alemán de Normalización, 1995.Google ScholarGoogle Scholar
  11. A. Dragomir, M. Adam, M. Andruşcă, A. Munteanu, "Estrés térmico a largo plazo de un contacto eléctrico extraíble", MPS Mai 18 - 21 Cluj-Napoca Rumania, 2015.Google ScholarGoogle Scholar
  12. A. Willig, A. Wolisz, "Estabilidad del anillo del protocolo de paso de token Profibus sobre enlaces propensos a errores", IEEE Trans. Ind. Electron. vol. 48, pp. 1025--1033, octubre de 2001.Google ScholarGoogle ScholarCross RefCross Ref
  13. S. Lee, SH Lee, KC Lee, JW Choi, MH Lee, "Gestión del rendimiento de las redes de comunicación para la fabricación integrada por computadora", Int. J. Adv. Manuf. Technol. vol. 18, no. 10, págs. 764--770, noviembre de 2001.Google ScholarGoogle ScholarCross RefCross Ref
  14. Q. Wang, F. He, interconexión de red de PROFIBUS y MODBUS para el sistema de control en red, pp. 153--158, 2018.Google ScholarGoogle Scholar
  15. Y. Watson, X. Lou, "Una revisión de las vulnerabilidades del protocolo PROFIBUS: Consideraciones para implementar controles de autenticación y autorización", ICETE 2017 -Actas de la XIV Conferencia Internacional Conjunta sobre Comercio Electrónico y Telecomunicaciones, vol. 4, pp. 444--449, 2017.Google ScholarGoogle Scholar
  16. S. Lee, KC Lee, MC Han, JS Yoon, "Gestión del rendimiento difuso en línea de redes Profibus", Comput. Ind., Vol. 46, no. 2, pp. 123--137, septiembre de 2001.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. ALAL Dias, SGS Sestito, D. Brandao, "Análisis de rendimiento de Profibus DP y Profinet en una aplicación de control de movimiento", J. Control. Autom. Electr. Syst. vol. 28, no. 1, pp. 86--93, 2017Google ScholarGoogle ScholarCross RefCross Ref
  18. Descripción del sistema PROFIBUS, págs. 30, 2016.Google ScholarGoogle Scholar
  19. Norma europea EN, 50 170, CENELEC, "Norma PROFIBUS", A. Dragomir, M. Adam, M. Andruşcă, A. Munteanu, 1996.Google ScholarGoogle Scholar
  20. R. Zurawski, Industrial Communication Technology Handbook. Second Edition. New York: CRC Press Taylor & Francis Group, 2015.Google ScholarGoogle Scholar
  21. A. Dragomir, M. Adam, M. Andruşcă, A. Munteanu, "Aspectos relativos a la influencia de los factores ambientales en el monitoreo infrarrojo de equipos eléctricos", EPE Iaşi România, 2016.Google ScholarGoogle Scholar
  22. E. Tovar and F. Vasques, "Comunicaciones de bus de campo en tiempo real utilizando redes Profibus", en IEEE Transactions on Industrial Electronics, vol. 46, no. 6, págs. 1241--1251, diciembre de 1999.Google ScholarGoogle ScholarCross RefCross Ref
  23. Grow, R., "Un protocolo de token temporizado para redes de área local", en Actas de Electro'82, Protocolos de acceso a token, documento 17/3, 1982.Google ScholarGoogle Scholar

Index Terms

  1. Automation of a Valve Manufacturing Process with 7 Mechatronic Stations and a Robotic Arm through a Network of Profibus DP Industrial Protocol with Master-Slave Configuration

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          ICECC '20: Proceedings of the 3rd International Conference on Electronics, Communications and Control Engineering
          April 2020
          73 pages
          ISBN:9781450374996
          DOI:10.1145/3396730

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 29 May 2020

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited
        • Article Metrics

          • Downloads (Last 12 months)6
          • Downloads (Last 6 weeks)1

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader