skip to main content
10.1145/3400934.3400950acmotherconferencesArticle/Chapter ViewAbstractPublication PagesapcoriseConference Proceedingsconference-collections
research-article

Fault Detection System Using Machine Learning on Synthesis Loop Ammonia Plant

Authors Info & Claims
Published:25 August 2020Publication History

ABSTRACT

Synthesis loop is one of the critical systems in ammonia plant. Therefore, there is urgency for maintaining the reliability and availability of this system. Most of the shutdown events occur suddenly after the alarm is reached. So, there needs to be an early detection system to ensure anomaly problem captured by the operator before touching the alarm settings. The implementation of machine learning algorithms in making fault detection models has been used in various industries and objects. The algorithm used is the basic and ensemble classifier to compare which algorithms generate the best classification results. This research can provide a new idea and perspective into ammonia plant industry to prevent unscheduled shutdown by utilizing data using machine learning algorithm.

References

  1. Evans, P.C. & Annunziata, M. "Industrial internet: pushing the boundaries of minds and machines". GE Energy. 2012.Google ScholarGoogle Scholar
  2. Boyes, H., Hallaq, B., Cunningham, J., Watson, T. (2018). The industrial internet of things (IIoT): an analysis framework. Comput. Ind. 101, 1--12. doi:10.1016/j.compind.2018.04.015Google ScholarGoogle ScholarCross RefCross Ref
  3. Hagner, Thomas. (2009). The Alchemy of Air. New York: Broadway Books.Google ScholarGoogle Scholar
  4. Williamson, J. "Unplanned downtime affecting 82% of businesses. Accessed 25 Jan 2019Google ScholarGoogle Scholar
  5. Performance Report year period 2017-2019. Jakarta: PT Pupuk Indonesia (Persero).Google ScholarGoogle Scholar
  6. Amoee, G., M. Behrouz, B. Malihe. (2011). A comparison between data mining prediction algorithms for fault detection (Case study: Ahanpishegan co.). IJCSI International Journal of Computer Sciences Issues. 8, (3): 425--431.Google ScholarGoogle Scholar
  7. Bruton, K., Coakley, D., Raftery, P., Cusack, D. O., Keane, M. M., & O'Sullivan, D. T. J. (2015). Comparative analysis of the ahu info fault detection and diagnostic expert tool for ahus with apar. Energy Efficiency, 8(2), 299--322. doi:10.1007/s12053-014-9289-zGoogle ScholarGoogle ScholarCross RefCross Ref
  8. Purarjomandlangrudi, A., Ghapanchi, A. H., & Esmalifalak, M. (2014). A data mining approach for fault diagnosis: An application of anomaly detection algorithm. Measurement 55, 343--352. doi: 10.1016/j.measurement.2014.05.029Google ScholarGoogle ScholarCross RefCross Ref
  9. Saravanan, N., Siddabattuni, V. N. S. K., & Ramachandran, K. I. (2010). Fault diagnosis of spur bevel gear box using artificial neural network (ANN), and proximal support vector machine (PSVM). Applied Soft Computing. 10 (1): 344--360. doi:10.1016/j.asoc.2009.08.006Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Yang, C., Liu, J., Zeng, Y., & Xie, G. (2019). Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model. Renewable Energy 133, 433--441. doi:10.1016/j.renene.2018.10.062Google ScholarGoogle ScholarCross RefCross Ref
  11. Qi, G., Zhu, Z., Erqinhu, K., Chen, Y., Chai, Y., & Sun, J. (2018). Fault-diagnosis for reciprocating compressors using big data and machine learning. Simulation Modelling Practice and Theory. 80: 104--127. doi:10.1016/j.simpat.2017.10.005Google ScholarGoogle ScholarCross RefCross Ref
  12. Santos, P., Villa, L. F., Reñones, A., Bustillo, A., & Maudes, J. (2015). An SVM-Based Solution for Fault Detection in Wind Turbines. Sensors. 15 (3): 5627--5648. doi:10.3390/s150305627Google ScholarGoogle ScholarCross RefCross Ref
  13. Wise, B. M., Gallagher, N. B., Butler, S. W., White Jr., D. D., & Barna, G. G. (1999). A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process. Journal of Chemometrics, 13(3-4), 379--396. doi:10.1002/(SICI)1099-128X(199905/08)13:3/4<379::AID-CEM556>3.0.CO;2-NGoogle ScholarGoogle ScholarCross RefCross Ref
  14. Kresta, J. V., Macgregor, J. F., & Marlin, T. E. (1991). Multivariate statistical monitoring of process operating performance. Canadian Journal of Chemical Engineering, 69(1), 35--47. doi:10.1002/cjce.5450690105Google ScholarGoogle ScholarCross RefCross Ref
  15. Wong, P. K., Yang, Z., Vong, C. M., & Zhong, J. (2014). Real-time fault diagnosis for gas turbine generator systems using extreme learning machine. Neurocomputing. 128: 249--257. doi:10.1016/j.neucom.2013.03.059Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Henmi, T., Inoue, A., Deng, M., & Yoshinaga, S. -. (2016). Early detection of plant faults by using machine learning. InAdvanced Mechatronic Systems (ICAMechS)," 2016, International Conference on 2016, Nov 30 (pp. 201--205). doi:10.1109/ICAMechS.2016.7813447Google ScholarGoogle Scholar
  17. Katipamula, S., & Brambley, M. R. (2005). Methods for Fault Detection, Diagnostics and Prognostics for Building Systems - A Review Part I. HVAC and R Research. 11: 34--48. doi:10.1080/10789669.2005.10391123Google ScholarGoogle Scholar
  18. Chen, Xiangrui. (2018). Anomaly detection of petrochemical process engineering based on neural network. Chemical Engineering Transactions Vol 71, 2018. doi:10.3303/CET1871044Google ScholarGoogle Scholar
  19. Wu, H & Zhao, J. (2018). Deep convolutional neural network model based chemical process fault diagnosis. Computers and Chemical Engineering. doi: 10.1016./j.compchemeng.2018.04.009.Google ScholarGoogle Scholar
  20. Kini, K. R., & Madakyaru, M. (2019). Anomaly detection using multi-scale dynamic principal component analysis for tenneesse eastman process. Indian Control Conference (ICC) 2019. doi:10.1109/INDIANCC.2019.8715552Google ScholarGoogle ScholarCross RefCross Ref
  21. Zulkarnain, Surjandari, I., Bramasta, R. R., & Laoh, E. (2019). Fault detection using machine learning on geothermal power plant. 16th International Conference on Service Systems and Service Management, ICSSSM 2019, doi:10.1109/ICSSSM.2019.8887710.Google ScholarGoogle ScholarCross RefCross Ref
  22. Kim, K. H.; Seok Lee, H., Kim, J. H.; & Ho Park, J. (2019). Detection of boiler tube leakage fault in a thermal power plant using machine learning based data mining technique. International Conference on Industrial Technology (ICIT) 2019. doi:10.1109/ICIT.2019.8755058Google ScholarGoogle ScholarCross RefCross Ref
  23. Lejla Banjanovic-Mehmedovic et al. (2017). Nerual network-based data-driven modelling of anomaly detection in thermal power plant. Automatika. 58: 1, 69--79.Google ScholarGoogle ScholarCross RefCross Ref
  24. Dhini, A., Kusumoputro, B., & Surjandari, I. (2017). Neural network based system for detecting and diagnosing faults in steam turbine of thermal power plant. International Conference on Awareness Science and Technology (iCAST) 2017. doi:10.1109/ICAwST.2017.8256435Google ScholarGoogle ScholarCross RefCross Ref
  25. Yin, S., Zhu, X., & Jing, C. (2014). Fault detection based on a robust one class support vector machine. Neurocomputing. 124: 263--268. doi:10.1016/j.neucom.2014.05.035Google ScholarGoogle ScholarCross RefCross Ref
  26. Accorsi, R., Manzini, R., Pascarella, P., Patella, M., & Sassi, S. (2017). Data mining and machine learning for condition-based maintenance. Procedia Manufacturing 11, 11531161. doi:10.1016/j.promfg.2017.07.239Google ScholarGoogle ScholarCross RefCross Ref
  27. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning. 20 (3): 273--297. doi:10.1023/A:1022627411411Google ScholarGoogle ScholarCross RefCross Ref
  28. Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine learning: a review of classification and combining techniques. Artificial Intelligence Review. 26 (3): 159--190. doi:10.1007/s10462-007-9052-3Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Guo, J., Wang, X., & Li, Y. (2018). kNN based on probability density for fault detection in multimodal process. Journal of Wiley Chemometrics, DOI: 10.1002/cem.3021Google ScholarGoogle Scholar
  30. He, S., Wang, G. A., Zhang, M., & Cook, D. F. (2013). Multivariate process monitoring and fault identification using multiple decision tree classifiers. International Journal of Production Research, DOI: 10.1080/00207543.2013.774474Google ScholarGoogle ScholarCross RefCross Ref
  31. Hu, Q., Si, X. -., Zhang, Q. -., & Qin, A. -. (2020). A rotating machinery fault diagnosis method based on multi-scale dimensionless indicators and random forest. Mechanical System and Signal Processing 139 (2020) 106609. doi:10.1016/j.ymssp.2019.106609Google ScholarGoogle ScholarCross RefCross Ref
  32. Shrivastava, R., Mahalingam, H., & Dutta, N. N. (2017). Application and evaluation of random forest classifier technique for fault detection in bioreactor operation. Chemical Engineering Communications, doi: 10.1080/00986445.2017.1292259Google ScholarGoogle Scholar
  33. Larose, Daniel T. & Larose, Chantal D. (2015). Data Mining and Predictive Analysis. John Willey & Sons, IncGoogle ScholarGoogle Scholar
  34. Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B., & Si, Y. (2018). A data-driven design for fault detection of wind turbines using random forests and XGboost. IEEE Access, 6, 21020--21031. doi:10.1109/ACCESS.2018.2818678Google ScholarGoogle ScholarCross RefCross Ref
  35. Tsaganos, G., Nikitakos, N., Dalaklis, D., Ölcer, A. I., & Papachristos, D. (2020). Machine learning algorithms in shipping: Improving engine fault detection and diagnosis via ensemble methods. WMU Journal of Maritime Affairs, doi:10.1007/s13437-019-00192-wGoogle ScholarGoogle Scholar

Index Terms

  1. Fault Detection System Using Machine Learning on Synthesis Loop Ammonia Plant

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      APCORISE '20: Proceedings of the 3rd Asia Pacific Conference on Research in Industrial and Systems Engineering
      June 2020
      410 pages
      ISBN:9781450376006
      DOI:10.1145/3400934

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 25 August 2020

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      APCORISE '20 Paper Acceptance Rate68of110submissions,62%Overall Acceptance Rate68of110submissions,62%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader