skip to main content
10.1145/3400934.3400985acmotherconferencesArticle/Chapter ViewAbstractPublication PagesapcoriseConference Proceedingsconference-collections
research-article

Development of NEH for Permutation Flowshop Scheduling Problem

Authors Info & Claims
Published:25 August 2020Publication History

ABSTRACT

The global movement towards the free market in the 1990s has turned the global market to become highly competitive. Applying an efficient scheduling method is one of the effective strategies in increasing the manufacturing efficiency and competitiveness of the manufacture. Therefore, this paper focuses on solving large-scale flow shop sequencing problem that can be widely applied in the industry. Specifically, we modify Nawaz, Enscore, and Ham (NEH) heuristic by using a new indicator value that combines median and standard deviation. In addition, a local search strategy is proposed for enhancing the method. The result shows that the proposed heuristic can outperform other compared heuristics in obtaining a better solution.

References

  1. Zhang, Songyan. (2010). Large-scale flow shop scheduling based on genetic algorithm. 1. 10.1109/ICETC.2010.5529244.Google ScholarGoogle Scholar
  2. Liu, W., Jin, Y., & Price, M. (2017). A new improved NEH heuristic for permutation flowshop scheduling problems. International Journal of Production Economics, 193, 21--30. doi: 10.1016/j.ijpe.2017.06.026Google ScholarGoogle ScholarCross RefCross Ref
  3. Page, E. (1961). An Approach to the Scheduling of Jobs on Machines. Journal of The Royal Statistical Society: Series B (Methodological), 23(2), 484--492. https://doi.org/10.1111/j.2517-6161.1961.tb00432.xGoogle ScholarGoogle ScholarCross RefCross Ref
  4. Campbell, H., Dudek, R., & Smith, M. (1970). A Heuristic Algorithm for the n Job, m Machine Sequencing Problem. Management Science, 16(10), B-630-B-637. doi: 10.1287/mnsc.16.10.b630Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Palmer, D. (1965). Sequencing Jobs Through a Multi-Stage Process in the Minimum Total Time -- A Quick Method of Obtaining a Near Optimum. OR, 16(1), 101. https://doi.org/10.2307/3006688Google ScholarGoogle ScholarCross RefCross Ref
  6. Dannenbring, D. (1977). An Evaluation of Flow Shop Sequencing Heuristics. Management Science, 23(11), 1174--1182. doi: 10.1287/mnsc.23.11.1174.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Nawaz, M., Enscore, E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91--95. https://doi.org/10.1016/0305-0483(83)90088-9Google ScholarGoogle ScholarCross RefCross Ref
  8. Gupta, J. (1971). A Functional Heuristic Algorithm for the Flowshop Scheduling Problem. Operational Research Quarterly (1970-1977), 22(1), 39. https://doi.org/10.2307/3008015Google ScholarGoogle Scholar
  9. Hundal, T., & Rajgopal, J. (1988). An extension of Palmer's heuristic for the flow shop scheduling problem. International Journal of Production Research, 26(6), 1119--1124. https://doi.org/10.1080/00207548808947922Google ScholarGoogle ScholarCross RefCross Ref
  10. Koulamas, C. (1998). A new constructive heuristic for the flowshop scheduling problem. European Journal of Operational Research, 105(1), 66--71. https://doi.org/10.1016/s0377-2217(97)00027-1Google ScholarGoogle ScholarCross RefCross Ref
  11. Li Xiao-ping, Wang Yue-xuan, & Wu Cheng. Heuristic algorithms for large flowshop scheduling problems. Fifth World Congress on Intelligent Control And Automation (IEEE Cat. No. 04EX788). doi: 10.1109/wcica.2004.1343068Google ScholarGoogle Scholar
  12. Kalczynski, P., & Kamburowski, J. (2007). On the NEH heuristic for minimizing the makespan in permutation flow shops. Omega, 35(1), 53--60. https://doi.org/10.1016/j.omega.2005.03.003Google ScholarGoogle ScholarCross RefCross Ref
  13. Rifai, A., Nguyen, H., & Dawal, S. (2016). Multi-objective adaptive large neighborhood search for distributed reentrant permutation flow shop scheduling. Applied Soft Computing, 40, 42--57. doi: 10.1016/j.asoc.2015.11.034Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Dong, X., Huang, H., & Chen, P. (2008). An improved NEH-based heuristic for the permutation flowshop problem. Computers & Operations Research, 35(12), 3962--3968. doi: 10.1016/j.cor.2007.05.005Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Dang, F., Li, W., & Ye, H. (2018). An efficient constructive heuristic to balance trade-offs between makespan and flowtime in permutation flow shop scheduling. Procedia Manufacturing, 26, 40--48. doi: 10.1016/j.promfg.2018.07.005Google ScholarGoogle ScholarCross RefCross Ref
  16. Pinedo, M. (2008). Scheduling. New York: Springer.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Rand, G., & French, S. (1982). Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop. The Journal of The Operational Research Society, 33(9), 862. https://doi.org/10.2307/2581219.Google ScholarGoogle ScholarCross RefCross Ref
  18. Garey, M., Johnson, D., & Sethi, R. (1976). The Complexity of Flowshop and Jobshop Scheduling. Mathematics of Operations Research, 1(2), 117--129. https://doi.org/10.1287/moor.1.2.117Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Baker, K. (1974). Introduction to sequencing and scheduling. Wiley.Google ScholarGoogle Scholar
  20. Garey, M., & Johnson, D. (1979). Computers and Intractability A Guide To The Theory of Np-Completeness. Freeman & Company, New York.Google ScholarGoogle Scholar
  21. Sarin, S., & Lefoka, M. (1993). Scheduling heuristic for the n-job m-machine flow shop. Omega, 21(2), 229--234. https://doi.org/10.1016/0305-0483(93)90055-pGoogle ScholarGoogle ScholarCross RefCross Ref
  22. Pour, H. (2001). A new heuristic for the n-job, m-machine flow-shop problem. Production Planning & Control, 12(7), 648--653. https://doi.org/10.1080/09537280152582995Google ScholarGoogle ScholarCross RefCross Ref
  23. Turner, S., & Booth, D. (1987). Comparison of heuristics for flow shop sequencing. Omega, 15(1), 75--78. https://doi.org/10.1016/0305-0483(87)90054-5Google ScholarGoogle ScholarCross RefCross Ref
  24. Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem. European Journal of Operational Research, 47(1), 65--74. https://doi.org/10.1016/0377-2217(90)90090-xGoogle ScholarGoogle ScholarCross RefCross Ref
  25. Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics. European Journal of Operational Research, 165(2), 479--494. https://doi.org/10.1016/j.ejor.2004.04.017Google ScholarGoogle ScholarCross RefCross Ref
  26. Framinan, J., & Leisten, R. (2003). An efficient constructive heuristic for flowtime minimisation in permutation flow shops. Omega, 31(4), 311--317. https://doi.org/10.1016/s0305-0483(03)00047-1Google ScholarGoogle ScholarCross RefCross Ref
  27. Laha, D., & Sarin, S. (2009). A heuristic to minimize total flow time in permutation flow shop. Omega, 37(3), 734--739. doi: 10.1016/j.omega.2008.05.002Google ScholarGoogle ScholarCross RefCross Ref
  28. Abedinnia, H., Glock, C., & Brill, A. (2016). New simple constructive heuristic algorithms for minimizing total flow-time in the permutation flowshop scheduling problem. Computers & Operations Research, 74, 165--174. doi: 10.1016/j.cor.2016.04.007Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rajendran, C., & Ziegler, H. (1997). An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs. European Journal of Operational Research, 103(1), 129--138. https://doi.org/10.1016/s0377-2217(96)00273-1Google ScholarGoogle ScholarCross RefCross Ref
  30. J. M. Framinan, R. Leisten & C. Rajendran (2003): Different initial sequences for the heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or flowtime in the static permutation flowshop sequencing problem, International Journal of Production Research, 41:1, 121--148. doi: 10.1080/00207540210161650Google ScholarGoogle ScholarCross RefCross Ref
  31. Rajendran, C. (1993). Heuristic algorithm for scheduling in a flowshop to minimize total flowtime. International Journal of Production Economics, 29(1), 65--73. doi: 10.1016/0925-5273(93)90024-fGoogle ScholarGoogle ScholarCross RefCross Ref
  32. Woo, H., & Yim, D. (1998). A heuristic algorithm for mean flowtime objective in flowshop scheduling. Computers & Operations Research, 25(3), 175--182. doi: 10.1016/s0305-0548(97)00050-6Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Baskar, A., Anthony Xavior, M., & Dhanasakkaravarthi, B. (2016). Impact of Initial Partial Sequence in the Makespan, in Permutation Flow Shop Scheduling Heuristic Algorithms - An Analysis. Indian Journal of Science And Technology, 9(42). doi: 10.17485/ijst/2016/v9i42/103302Google ScholarGoogle Scholar
  34. Vallada, E., Ruiz, R. and Framinan, J., 2015. New hard benchmark for flowshop scheduling problems minimising makespan. European Journal of Operational Research, 240(3), pp. 666--677.Google ScholarGoogle ScholarCross RefCross Ref
  35. Liu, W., Jin, Y., & Price, M. (2017). A new improved NEH heuristic for permutation flowshop scheduling problems. International Journal of Production Economics, 193, 21--30. doi: 10.1016/j.ijpe.2017.06.026Google ScholarGoogle ScholarCross RefCross Ref
  36. Nailwal, K., Gupta, D., Jeet, K. and Sharma, S. (2019). An improvement heuristic for permutation flow shop scheduling. International Journal of Process Management and Benchmarking, 9(1), p.124. doi: 10.1504/IJPMB.2019.097823Google ScholarGoogle ScholarCross RefCross Ref
  37. Taillard, E. (1993) 'Benchmarks for basic scheduling problems', European Journal of Operational Research, Vol. 64, No. 2, pp. 278--285.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Development of NEH for Permutation Flowshop Scheduling Problem

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        APCORISE '20: Proceedings of the 3rd Asia Pacific Conference on Research in Industrial and Systems Engineering
        June 2020
        410 pages
        ISBN:9781450376006
        DOI:10.1145/3400934

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 25 August 2020

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        APCORISE '20 Paper Acceptance Rate68of110submissions,62%Overall Acceptance Rate68of110submissions,62%
      • Article Metrics

        • Downloads (Last 12 months)3
        • Downloads (Last 6 weeks)0

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader