skip to main content
research-article

DLRF-Net: A Progressive Deep Latent Low-Rank Fusion Network for Hierarchical Subspace Discovery

Authors Info & Claims
Published:31 March 2021Publication History
Skip Abstract Section

Abstract

Low-rank coding-based representation learning is powerful for discovering and recovering the subspace structures in data, which has obtained an impressive performance; however, it still cannot obtain deep hidden information due to the essence of single-layer structures. In this article, we investigate the deep low-rank representation of images in a progressive way by presenting a novel strategy that can extend existing single-layer latent low-rank models into multiple layers. Technically, we propose a new progressive Deep Latent Low-Rank Fusion Network (DLRF-Net) to uncover deep features and the clustering structures embedded in latent subspaces. The basic idea of DLRF-Net is to progressively refine the principal and salient features in each layer from previous layers by fusing the clustering and projective subspaces, respectively, which can potentially learn more accurate features and subspaces. To obtain deep hidden information, DLRF-Net inputs shallow features from the last layer into subsequent layers. Then, it aims at recovering the hierarchical information and deeper features by respectively congregating the subspaces in each layer of the network. As such, one can also ensure the representation learning of deeper layers to remove the noise and discover the underlying clean subspaces, which will be verified by simulations. It is noteworthy that the framework of our DLRF-Net is general and is applicable to most existing latent low-rank representation models, i.e., existing latent low-rank models can be easily extended to the multilayer scenario using DLRF-Net. Extensive results on real databases show that our framework can deliver enhanced performance over other related techniques.

References

  1. Y. Bengio, A. Courville, and P. Vincent. 2013. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell 35, 8 (2013), 1798–1828. DOI:https://doi.org/10.1109/TPAMI.2013.50 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. Cunningham and Z. Ghahramani. 2015. Linear dimensionality reduction: Survey, insights, and generalizations. J. Mach. Learn. Res. 16, 1 (2015), 2859–2900. DOI:https://doi.org/10.12681/eadd/19088 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. F. Wang and J. Sun. 2015. Survey on distance metric learning and dimensionality reduction in data mining. Data Min. Knowl. Discov 29, 2 (2015), 534–564. DOI:https://doi.org/10.1007/s10618-014-0356-z Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Wright, Y. Ma, and J. Mairal. 2010. Sparse representation for computer vision and pattern recognition. Proc. IEEE 98, 6 (2010), 1031–1044. DOI:https://doi.org/10.1007/978-1-4471-6714-3_8Google ScholarGoogle ScholarCross RefCross Ref
  5. G. Liu, Z. Lin, and S. C. Yan. 2013. Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell 35, 1 (2013), 171–184. DOI:https://doi.org/10.1109/TPAMI. 2012.88 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. F. Fomin, P. Golovach, and F. Panolan. 2020. Parameterized low-rank binary matrix approximation. Data Min. Knowl. Discov 34, 2 (2020), 478–532. DOI:https://doi.org/10.1007/s10618-019-00669-5Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. E. J. Candès, X. Li, and Y. Ma. 2011. Robust principal component analysis?. J. ACM 58, 3 (2011), 1–11. DOI:https://doi.org/10.1145/1970392.1970395Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. B. K. Bao, G. C. Liu, and C. Xu. 2012. Inductive robust principal component analysis. IEEE Trans. Image Process. 21, 8 (2012), 3794–3800. DOI:https://doi.org/10.1109/TIP.2012.2192742 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. G. C. Liu and S. C. Yan. 2011. Latent low-rank representation for subspace segmentation and feature extraction. In Proceedings of the IEEE Conference on Computer Vision. 1615–1622. DOI:https://doi.org/10.1109/ICCV.2011.6126422 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Z. Zhang, S. C. Yan, and M. B. Zhao. 2014. Similarity preserving low-rank representation for enhanced data representation and effective subspace learning. Neural Networks 53 (2014), 81–94. DOI:https://doi. org/10.1016/j.neunet.2014.01.001Google ScholarGoogle ScholarCross RefCross Ref
  11. Z. Zhang, F. Li, M. Zhao, L. Zhang, and S. Yan. 2016. Joint low-rank and sparse principal feature coding for enhanced robust representation and visual classification. IEEE Trans. Image Process. 25, 6 (2016), 2429–2443. DOI:https://doi.org/10.1109/TIP.2016.2547180 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Yu and Y. Wu. 2018. Subspace clustering based on latent low rank representation with Frobenius norm minimization. Neurocomputing 275 (2018), 2479–2489. DOI:https://doi.org/10.1016/j.neucom.2017.11.021 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Z. Lin, M. Chen, L. Wu, and Y. Ma. 2009. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. Technical Report UILU-ENG-09-2215. DOI:https://doi.org/10.1016/j.jsb. 2012.10.010Google ScholarGoogle Scholar
  14. H. Zhang, Z. C. Lin, C. Zhang, and J. Gao. 2014. Robust latent low rank representation for subspace clustering. Neurocomputing 145 (2014), 369–373. DOI:https://doi.org/10.1016/j.neucom.2014.05.022Google ScholarGoogle ScholarCross RefCross Ref
  15. J. Ren, Z. Zhang, S. Li, Y. Wang, G. Liu, S. Yan, and M. Wang. 2019. Learning hybrid representation by robust dictionary learning in factorized compressed space. IEEE Trans. Image Process. 29, 1 (2020), 3941–3956. DOI:10.1109/TIP.2020.2965289Google ScholarGoogle ScholarCross RefCross Ref
  16. P. He, X. Xu, J. Ding, and B. Fan. 2020. Low-rank nonnegative matrix factorization on Stiefel manifold. Inf. Sci. 514 (2020), 131–148. DOI:https://doi.org/10.1016/j.ins.2019.12.004Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. Hou, F. P. Nie, X. L. Li, D.Y. Yi, and Yi Wu. 2014. Joint embedding learning and sparse regression: A framework for unsupervised feature selection. IEEE Trans. Cybern. 44, 6 (2014), 793–804. DOI:https://doi.org/10.1109/TCYB.2013.2272642Google ScholarGoogle ScholarCross RefCross Ref
  18. L. Ma, C. H. Wang, B. H. Xiao, and W. Zhou. 2012. Sparse representation for face recognition based on discriminative low-rank dictionary learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2586–2593. DOI: https://doi.org/10.1109/CVPR.2012.6247977. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. L. Y. Li, S. Li, and Y. Fu. 2014. Learning low-rank and discriminative dictionary for image classification. Image Vis. Comput. 32, 10 (2014), 814–823. DOI:https://doi.org/10.1016/j.imavis.2014.02.007Google ScholarGoogle ScholarCross RefCross Ref
  20. Y. Zhang, Z. L. Jiang, and L. Davis. 2013. Learning structured low-rank representations for image classification. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 2013, 676–683. DOI:https://doi.org/10.1109/cvpr.2013.93 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Chen and Z. Yi. 2014. Sparse representation for face recognition by discriminative low-rank matrix recovery. J. Vis. Commun. Image R 25, 5 (2014), 763–773. DOI:https://doi.org/10.1016/j.jvcir.2014.01.015Google ScholarGoogle ScholarCross RefCross Ref
  22. J. Xie, J. Yang, J. Qian, Y. Tai, and H. Zhang. 2017. Robust nuclear norm-based matrix regression with applications to robust face recognition. IEEE Trans. Image Process. 26, 5 (2017), 2286–2295. DOI:https://doi.org/10.1109/TIP.2017.2662213 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Z. Xue, J. Du, D. Du, and S. Lyu. 2019. Deep low-rank subspace ensemble for multi-view clustering. Inf. Sci. 482 (2019), 210–227. DOI:https://doi.org/10.1016/j.ins.2019.01.018Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Z. Li and J. Tang. 2017. Weakly-supervised deep nonnegative low-rank model for social image tag refinement and assignment. In Proceedings of AAAI Conference on Artificial Intelligence. 4154–4160. DOI:https://dlacm.xilesou.top/doi/10.5555/3298023.3298171 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. Zhao, Y. Lv, Z. Zhou, and F. Cao. 2017. A novel deep learning algorithm for incomplete face recognition: Low-rank-recovery network. Neural Networks 94 (2017), 115–124. DOI: https://doi.org/10.1016/j.neunet.2017.06.013.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. Cai, E. Candès, and Z. Shen. 2010. A singular value thresholding algorithm for matrix completion. SIAM J. Opt. 20, 4 (2010), 1956–1982. DOI:https://doi.org/10.1137/080738970Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Shi and J. Malik. 2000. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 8 (2000), 888–905. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. A. Nene, S. K. Nayar, and H. Murase. 1996. Columbia object image library (COIL-20). Technical Report CUCS-005-96.Google ScholarGoogle Scholar
  29. L. Wang, B. Wang, Z. Zhang, Q. Yue, L. Fu, G. Liu, and M. Wang. 2019. Robust auto-weighted projective low-rank and sparse recovery for visual representation. Neural Networks 117 (2019), 201–215. DOI:https://doi.org/10.1016/j.neunet.2019.05.007 Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Z. Zhang, M. Zhao, F. Li, L. Zhang, and S. Yan. 2017. Robust alternating low-rank representation by joint Lp- and L2,p-norm minimization. Neural Networks 96 (2017), 55–70. DOI:https://doi.org/10.1016/j.neunet.2017.08.001Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Z. Zhang, J. Ren, S. Li, R. Hong, Z. Zha, and M. Wang. 2019. Robust subspace discovery by block-diagonal adaptive locality-constrained representation. In Proceedings of the ACM International Conference on Multimedia. 1569–1577. DOI:https://doi.org/10.1145/3343031.3351023 Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Hull. 1994. A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16, 5 (1994), 550–554. DOI:10.1109/34.291440 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Z. Song, K. Cui, and G. Cheng. 2020. Image set face recognition based on extended low rank recovery and collaborative representation. Int. J. Mach. Learn. Cybern. 11, 1 (2020), 71–80. DOI:https://doi.org/10.1007/s13042-019-00941-6Google ScholarGoogle ScholarCross RefCross Ref
  34. Z. Zhang, L.Wang, S. Li, Y. Wang, Z. Zhang, Z. Zha, and M. Wang. 2019. Adaptive structure-constrained robust latent low-rank coding for image recovery. In Proceedings of the 19th IEEE International Conference on Data Mining.Google ScholarGoogle Scholar
  35. Y. Lu, Z. Lai, W. Wong, and X. Li. 2020. Low-rank discriminative regression learning for image classification. Neural Networks 125 (2020), 245–257. DOI:https://doi.org/10.1016/j.neunet.2020.02.007Google ScholarGoogle ScholarCross RefCross Ref
  36. H. Li and Z. Lin. 2020. Provable accelerated gradient method for nonconvex low rank optimization. Mach. Learn. 109, 1 (2020), 103–134. DOI:https://doi.org/10.1007/s10994-019-05819-wGoogle ScholarGoogle ScholarCross RefCross Ref
  37. X. Lan, S. Zhang, P. C. Yuen, and R. Chellappa. 2018. Learning common and feature-specific patterns: A novel multiple-sparse-representation based tracker. IEEE Trans. Image Process. 27, 4 (2018), 2022–2037. DOI:https://doi.org/10.1109/TIP.2017.2777183Google ScholarGoogle ScholarCross RefCross Ref
  38. F. V. Fomin, P. A. Golovach, D. Lokshtanov, F. Panolan, and S. Saurabh. 2020. Approximation schemes for low-rank binary matrix approximation problems. ACM Trans. Algorithms 16, 1 (2020), 12:1–12:39. DOI:https://doi.org/10.1145/3365653 Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. D. Graham and N. Allinson. 1998. Characterizing virtual eigensignatures for general purpose face recognition. In Face Recognition: From Theory to Application (NATO ASI Series F, Computer and Systems Sciences). Springer, Berlin, 446–456.Google ScholarGoogle Scholar
  40. A. Georghiades, P. Belhumeur, and D. Kriegman. 2001. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23, 6 (2001), 643–660. DOI:https://doi.org/10.1109/34.927464 Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. T. Sim, S. Baker, and M. Bsat. 2003. The CMU pose, illuminlation, and expression database. IEEE Trans. Pattern Anal. Mach. Intell. 25, 12 (2003), 1615–1618. DOI:https://doi.org/10.1109/afgr.2002.1004130 Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. B. Weyrauch, J. Huang, B. Heisele, and V. Blanz. 2004. Component-based face recognition with 3D morphable models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 85–85. DOI:https://doi.org/10.1109/CVPR.2004.315 Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. J. Li, H. Chang, J. Yang, W. Luo, and Y. Fu. 2017. Visual representation and classification by learning group sparse deep stacking network. IEEE Transactions . Image Process. 27, 1 (2017), 464–476. DOI:https://doi.org/10.1109/tip.2017.2765833/12234Google ScholarGoogle ScholarCross RefCross Ref
  44. H. Xiao, K. Rasul, and R. Vollgraf. 2017. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv:1708.07747v2.Google ScholarGoogle Scholar
  45. J. Li and H. Liu. 2017. Projective low-rank subspace clustering via learning deep encoder. In Proceedings of the International Joint Conferences on Artificial Intelligence. 2145–2151. DOI:https://doi.org/10.24963/ijcai.2017/298 Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. X. Chen, J. Li, Y. Song, F. Li, J. Chen, and K. Yang. 2019. Low-rank tensor completion for image and video recovery via capped nuclear norm. IEEE Access. 7 (2019), 112142–112153. DOI:https://doi.org/10.1109/access.2019.2934482Google ScholarGoogle ScholarCross RefCross Ref
  47. F. Su, H. Y. Shang, and J. Y. Wang. 2019. Low-rank deep convolutional neural network for multitask learning. Comput. Intell. Neurosci. 2019, 7410701:1–7410701:10. DOI:https://doi.org/10.1155/2019/7410701Google ScholarGoogle Scholar
  48. Z. Ding and Y. Fu. 2018. Deep transfer low-rank coding for cross-domain learning. IEEE Trans. Neural Netw. Learning Syst. 30, 6 (2018), 1768–1779. DOI:https://doi.org/10.1109/tnnls.2018.2874567Google ScholarGoogle ScholarCross RefCross Ref
  49. C. Lu, X. Peng, and Y. Wei. 2019. Low-rank tensor completion with a new tensor nuclear norm induced by invertible linear transforms. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 5996–6004. DOI:https://doi.org/10.1109/cvpr.2019.00615Google ScholarGoogle Scholar
  50. Y. Chen, X. Xiao, and Y. Zhou. 2020. Low-rank quaternion approximation for color image processing. IEEE Trans. Image Process. 29 (2020), 1426–1439. DOI:https://doi.org/10.1109/tip.2019.2941 319Google ScholarGoogle ScholarCross RefCross Ref
  51. A. Acharya, R. Goel, A. Metallinou, and I. S. Dhillon. 2019. Online embedding compression for text classification using low rank matrix factorization. In Proceedings of th eAAAI Conference on Artificial Intelligence. 6196–6203. DOI:https://doi.org/10.1609/aaai.v33i01.33016196Google ScholarGoogle Scholar
  52. J. Kim, J. Sim, and C. Kim. 2015. Video deraining and desnowing using temporal correlation and low-rank matrix completion. IEEE Trans. Image Process. 24, 9 (2015), 2658–2670. DOI:10.1109/TIP. 2015.2428933Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. H. Zhang and V. Patel. 2017. Convolutional sparse and low-rank coding-based rain streak removal. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 1259–1267. DOI:https://doi.org/10.1109/WACV.2017.145Google ScholarGoogle Scholar
  54. B. Kim, H. Kim, K. Kim, S. Kim, and J. Kim. 2019. Learning not to learn: Training deep neural networks with biased data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 9012–9020. DOI:https://doi.org/10.1109/cvpr.2019.00922Google ScholarGoogle Scholar
  55. Y. Wang, X. Lin, L. Wu, W. Zhang, Q. Zhang, and X. Huang. 2015. Robust subspace clustering for multi-view data by exploiting correlation consensus. IEEE Trans. Image Process. 24, 11 (2015), 3939–3949. DOI:10.1109/TIP.2015.2457339Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Y. Wang, L. Wu, X. Lin, and J. Gao. 2018. Multiview spectral clustering via structured low-rank matrix factorization. IEEE Trans. Neural Netw. Learning Syst. 29, 10 (2018), 4833–4843. DOI:10.1109/TNNLS.2017.2777489Google ScholarGoogle ScholarCross RefCross Ref
  57. P. Giampouras, A. Rontogiannis, and K. Koutroumbas. 2019. Alternating iteratively reweighted least squares minimization for low-rank matrix factorization. IEEE Trans. Signal Process. 67, 2 (2019), 490–503. DOI:10.1109/TSP.2018.2883921Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Z. Zhang, J. Ren, Z. Zhang, and G. Liu. 2020. Deep latent low-rank fusion network for progressive subspace discovery. In Proceedings of the International Joint Conferences on Artificial Intelligence. 1–8.Google ScholarGoogle Scholar
  59. Z. Kang, X. Zhao, C. Peng, H. Zhu, J. T. Zhou, X. Peng, W. Chen, and Z. Xu. 2020. Partition level multiview subspace clustering. Neural Networks 122 (2019), 279–288. DOI:https://doi.org/10.1016 /j.ne unet.2019.10.010Google ScholarGoogle ScholarCross RefCross Ref
  60. Z. Kang, G. Shi, S. Huang, W. Chen, X. Pu, J. T. Zhou, and Z. Xu. 2020. Multi-graph fusion for multi-view spectral clustering. Knowledge-Based Syst. 189 (2020), 105102. DOI:10.1016/j.knosys.2019.105102Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Z. Kang, H. Pan, S. Hoi, and Z. Xu. 2019. Robust graph learning from noisy data. IEEE Trans. Cybern. 2019, 1–11. DOI:10.1109/TCYB.2018.2887094Google ScholarGoogle Scholar

Index Terms

  1. DLRF-Net: A Progressive Deep Latent Low-Rank Fusion Network for Hierarchical Subspace Discovery

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Multimedia Computing, Communications, and Applications
      ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 17, Issue 1s
      January 2021
      353 pages
      ISSN:1551-6857
      EISSN:1551-6865
      DOI:10.1145/3453990
      Issue’s Table of Contents

      Copyright © 2021 Association for Computing Machinery.

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 31 March 2021
      • Accepted: 1 May 2020
      • Revised: 1 April 2020
      • Received: 1 February 2020
      Published in tomm Volume 17, Issue 1s

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Refereed
    • Article Metrics

      • Downloads (Last 12 months)31
      • Downloads (Last 6 weeks)3

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format