skip to main content
10.1145/3405758.3405778acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbbtConference Proceedingsconference-collections
research-article

Activated Monocyte-derived TNF-α Upregulates HGF/c-Met to Trigger EMT of Hepatoma Cells

Published:10 July 2020Publication History

ABSTRACT

Monocytes/macrophages are critical inflammatory components predominantly recruited to tumor tissue to facilitate tumor metastasis. However, the underlying regulatory mechanisms remain largely unclear. In the study, we show that tumor-secreted soluble factors are capable of activating monocytes to produce higher level of proinflammatory cytokine tumor necrosis factor alpha (TNF-α), which in turn functions on tumor cells to increase the expression hepatocyte growth factor (HGF) and c-Met in liver cancer cell line HepG2 cells. TNF-α is also able to induce epithelial-mesenchymal transition (EMT) in HepG2 cells, as displayed by the reduced E-Cadherin expression and increased amount of Vimentin, N-Cadherin, transcription factor SNAI1, and SNAI2, but not Twist. Furthermore, we demonstrated that TNF-α possesses the capability of promoting the migration of HepG2 cells, which can be partially impaired by blocking c-Met signaling pathway. Collectively, these data reveal that TNF-α derived from tumor activated monocytes is leading to the upregulation of HGF and c-Met, whose interaction is able to synergistically switch on the activation of HGF-c-Met signaling pathway to foster the EMT. Thus, enhanced secretion of TNF-α in monocytes may represent a novel mechanism linking the innate response to metastasis in human hepatocellular carcinoma, which provides novel strategy for anti-tumor therapy.

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA. Cancer J. Clin. (2020). doi:10.3322/caac.21590Google ScholarGoogle Scholar
  2. Valastyan, S. & Weinberg, R. A. Tumor metastasis: Molecular insights and evolving paradigms. Cell (2011). doi:10.1016/j.cell.2011.09.024Google ScholarGoogle Scholar
  3. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nature Medicine (2013). doi:10.1038/nm.3394Google ScholarGoogle Scholar
  4. Kitamura, T., Qian, B. Z. & Pollard, J. W. Immune cell promotion of metastasis. Nature Reviews Immunology (2015). doi:10.1038/nri3789Google ScholarGoogle Scholar
  5. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell (2000). doi: 10.1016/S0092-8674(00)81683-9Google ScholarGoogle Scholar
  6. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next generation. Cell (2011). doi:10.1016/j.cell.2011.02.013Google ScholarGoogle Scholar
  7. Diepenbruck, M. & Christofori, G. Epithelial-mesenchymal transition (EMT) and metastasis: Yes, no, maybe? Current Opinion in Cell Biology (2016). doi:10.1016/j.ceb.2016.06.002Google ScholarGoogle Scholar
  8. Song, W., Mazzieri, R., Yang, T. & Gobe, G. C. Translational significance for tumor metastasis of tumor-associated macrophages and epithelial-mesenchymal transition. Frontiers in Immunology (2017). doi:10.3389/fimmu.2017.01106Google ScholarGoogle Scholar
  9. Suarez-Carmona, M., Lesage, J., Cataldo, D. & Gilles, C. EMT and inflammation: inseparable actors of cancer progression. Molecular Oncology (2017). doi: 10.1002/1878-0261.12095Google ScholarGoogle Scholar
  10. Kuang, D. M. et al. Tumor-derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes. Blood (2007). doi: 10.1182/blood-2007-01-068031Google ScholarGoogle Scholar
  11. Sato, Y. et al. Epithelial-mesenchymal transition induced by transforming growth factor-β1/snail activation aggravates invasive growth of cholangiocarcinoma. Am. J. Pathol. (2010). doi: 10.2353/ajpath.2010.090747Google ScholarGoogle Scholar
  12. Sun, B., Liu, R., Xiao, Z. D. & Zhu, X. C-MET protects breast cancer cells from apoptosis induced by sodium butyrate. PLoS One (2012). doi:10.1371/journal.pone.0030143Google ScholarGoogle Scholar
  13. Mali, A. V., Joshi, A. A., Hegde, M. V. & Kadam, S. S. Enterolactone suppresses proliferation, migration and metastasis of MDA-MB-231 breast cancer cells through inhibition of uPA induced plasmin activation and MMPs-Mediated ECM remodeling. Asian Pacific J. Cancer Prev. (2017). doi: 10.22034/APJCP.2017.18.4.905Google ScholarGoogle Scholar
  14. Figueras, A. et al. ARole forCXCR4in peritonealandhematogenous ovarian cancer dissemination. Mol. Cancer Ther. (2018). doi: 10.1158/1535-7163.MCT-17-0643Google ScholarGoogle Scholar
  15. Kroepil, F. et al. Down-Regulation of CDH1 Is Associated with Expression of SNAI1 in Colorectal Adenomas. PLoS One (2012). doi:10.1371/journal.pone.0046665Google ScholarGoogle Scholar
  16. Birchmeier, C., Birchmeier, W., Gherardi, E. & Vande Woude, G. F. Met, metastasis, motility and more. Nature Reviews Molecular Cell Biology (2003). doi:10.1038/nrm1261Google ScholarGoogle Scholar
  17. Qian, B. Z. & Pollard, J. W. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell (2010). doi:10.1016/j.cell.2010.03.014Google ScholarGoogle Scholar
  18. Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889--896 (2010).Google ScholarGoogle ScholarCross RefCross Ref
  19. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, Inflammation, and Cancer. Cell (2010). doi:10.1016/j.cell.2010.01.025Google ScholarGoogle Scholar
  20. Chen, D. P. et al. Peritumoral monocytes induce cancer cell autophagy to facilitate the progression of human hepatocellular carcinoma. Autophagy (2018). doi:10.1080/15548627.2018.1474994Google ScholarGoogle Scholar
  21. Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nature Reviews Cancer (2009). doi:10.1038/nrc2618Google ScholarGoogle Scholar
  22. Noy, R. & Pollard, J. W. Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity (2014). doi:10.1016/j.immuni.2014.06.010Google ScholarGoogle Scholar
  23. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews Cancer (2004). doi:10.1038/nrc1256Google ScholarGoogle Scholar
  24. Su, S. et al. A Positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell (2014). doi:10.1016/j.ccr.2014.03.021Google ScholarGoogle Scholar

Index Terms

  1. Activated Monocyte-derived TNF-α Upregulates HGF/c-Met to Trigger EMT of Hepatoma Cells

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICBBT '20: Proceedings of the 2020 12th International Conference on Bioinformatics and Biomedical Technology
      May 2020
      163 pages
      ISBN:9781450375719
      DOI:10.1145/3405758

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 July 2020

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader