skip to main content
10.1145/3408127.3408146acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicdspConference Proceedingsconference-collections
research-article

Target Detection using Polarimetric Distributed MIMO Radar in Heterogeneous Compound-Gaussian Clutter

Published: 10 September 2020 Publication History

Abstract

A polarimetric distributed MIMO radar detector in heterogeneous compound Gaussian clutter is proposed. Based on the modified signal model of the polarimetric distributed MIMO radar, the inverse Gamma distribution assumption on the clutter texture and the complex inverse Wishart distribution assumption on the speckle clutter covariance matrix, the secondary data is used to obtain the maximum posteriori estimation of the texture so as to avoid the integral operation in test statistic. The Bayesian knowledge-aided polarimetric generalized likelihood ratio detector is then acquired. Simulation results show that the proposed detector has a better detection performance than the existing detector.

References

[1]
S. Gogineni and A. Nehorai. Polarimetric MIMO radar with distributed antennas for target detection. IEEE Trans. Signal Process., 2010, 58 (3):1689--1697.
[2]
G. L. Cui, L. J. Kong, X. B. Yang, et al. Two-step GLRT design of MIMO radar in compound-Gaussian clutter. 2010 IEEE Radar Conference, Washington, DC, 2010, 343--347.
[3]
G. L. Cui, L. J. Kong, X. B. Yang, et al. Distributed target detection with polarimetric MIMO radar in compound-Gaussian clutter. Digital Signal Process., 2012, 22(3):430--438.
[4]
L. J. Kong, G. L. Cui, X. B. Yang, et al. Rao and Wald tests design of multiple-input multiple-output radar in compound-Gaussian clutter. IET Signal Process., 2011, 5(1):85--96.
[5]
B. L. Wang, G. L. Cui, Wei Y, et al. Polarimetric MIMO radar detection for correlated fluctuating targets. Radar Conference, Cincinnati, OH, 2014, 1: 1299--1232.
[6]
Q. He, N. H. Lehmann, R. S. Blum and A. M. Haimovich. MIMO radar moving target detection in homogeneous clutter. IEEE Trans. Aerosp. Electron. Syst., 2010, 46(3): 1290--1301.
[7]
M. Rangaswamy, D. D. Weiner and A. Ozturk. Non-Gaussian random vector identification using spherically invariant random processes. IEEE Trans. Aerosp. Electron. Syst., 1993, 29(1): 111--124.
[8]
S. Bidon, O. Besson and J. Tourneret. A Bayesian approach to adaptive detection in nonhomogeneous environments. IEEE Trans. Signal Process. 2008, 56(1): 205--217.
[9]
Y. C. Gao, H. B. Li, and B. Himed. Knowledge-aided range-spread target detection for distributed MIMO radar in nonhomogeneous environments. IEEE Trans. Signal Process., 2017, 65(3): 617--627.
[10]
L. J. Kong, N. Li, G. L. Cui, et al. Adaptive Bayesian detection for multiple-input multiple-output radar in compound-Gaussian clutter with random texture. IET Radar, Sonar & Naviga., 2016, 10(4):689--698.
[11]
B. L. Wang, G. L. Cui, Wei Y, et al. Li and L. Kong. Adaptive Bayesian detection using polarimetric MIMO radar in spatially heterogeneous clutter. 2014 IEEE Radar Conference, Cincinnati, OH, 2014, 1: 1218--1222.
[12]
Y. Xiang, Z. W. Liu, Y. L. Huang, et al. Moving target detection with polarimetric distributed MIMO radar in heterogeneous clutter. 2018 fourth IET International Radar Conference, Accepted.
[13]
F. C. Robey, D. R. Fuhrmann, E. J. Kelly and R. Nitzberg. A CFAR adaptive matched filter detector. IEEE Trans. Aerosp. Electron. Syst., 1992, 28(1): 208--216.
[14]
A. D. Maio and M. Lops. Design Principles of MIMO Radar Detectors. IEEE Trans. Aerosp. Electron. Syst., 2007, 43(3): 886--898.
[15]
L. Shen, Z. W. Liu and Y. G. Xu. Polarimetric detection and range estimation for a point-like target in non-Gaussian clutter. IET Radar, Sonar & Naviga., 2018, 12(3): 361--365.

Index Terms

  1. Target Detection using Polarimetric Distributed MIMO Radar in Heterogeneous Compound-Gaussian Clutter

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICDSP '20: Proceedings of the 2020 4th International Conference on Digital Signal Processing
    June 2020
    383 pages
    ISBN:9781450376877
    DOI:10.1145/3408127
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    In-Cooperation

    • University of Electronic Science and Technology of China: University of Electronic Science and Technology of China

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 10 September 2020

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Bayesian
    2. Polarization
    3. distributed MIMO radar
    4. heterogeneous clutter

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    • National Natural Science Foundation of China

    Conference

    ICDSP 2020

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 43
      Total Downloads
    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 08 Mar 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media