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ABSTRACT
The interactions of users with a recommendation system are in
general sparse, leading to the well-known cold-start problem. Side
information, such as age, occupation, genre and category, have
been widely used to learn latent representations for users and items
in order to address the sparsity of users’ interactions. Conditional
Variational Autoencoders (CVAEs) have recently been adapted for
integrating side information as conditions to constrain the learned
latent factors and to thereby generate personalised recommenda-
tions. However, the learning of effective latent representations that
encapsulate both user (e.g. demographic information) and item side
information (e.g. item categories) is still challenging. In this paper,
we propose a new recommendation model, called Hybrid Condi-
tional Variational Autoencoder (HCVAE) model, for personalised
top-n recommendation, which effectively integrates both user and
item side information to tackle the cold-start problem. Two CVAE-
based methods – using conditions on the learned latent factors, or
conditions on the encoders and decoders – are compared for inte-
grating side information as conditions. Our HCVAEmodel leverages
user and item side information as part of the optimisation objective
to help the model construct more expressive latent representations
and to better capture attributes of the users and items (such as
demographic, category preferences) within the personalised item
probability distributions. Thorough and extensive experiments con-
ducted on both the MovieLens and Ta-feng datasets demonstrate
that the HCVAE model conditioned on user category preferences
with conditions on the learned latent factors can significantly out-
perform common existing top-n recommendation approaches such
as MF-based and VAE/CVAE-based models.
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1 INTRODUCTION
Recommender systems are increasingly being used tomitigate infor-
mation overload on e-commerce and social media platforms. Such
recommender systems attempt to recognise the users’ preferences
from their behavior patterns and use such preferences to suggest a
ranked list of personalised top-n recommendations.
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Model-based Collaborative Filtering (CF) approaches, including
linear and non-linear models, have been widely studied in top-n
recommendation scenarios [1, 6, 13, 17, 22]. Matrix Factorisation
(MF) [13], a typical linear CF model, predicts users’ preferences
over items by exploiting low-dimensional subspace representa-
tions of the users and items, also known as embeddings. Recently,
non-linear models based on neural networks, especially Variational-
Autoencoder-based (VAE-based) models [16] with non-linear ac-
tivation functions, have been shown to be superior to MF-based
models for top-n recommendation tasks [16, 21] due to their expres-
sive representation learning abilities. A typical VAE-based model
encodes a user’s interactions with all items as input, then decodes
and reconstructs the user’s preference probability over all items
from the latent representations as output.

Despite their generally superior performances, a notable lim-
itation of the VAE-based recommenders is the manner in which
they integrate side information. This so-called side information can
include metadata about the users – such as age, gender or other
demographic information – or item metadata – such as popular-
ity, genre, or item description – that can be integrated into the
CF models to augment the user-item interactions and mitigate the
sparsity problem [1, 2, 5, 9, 18]. The latter leads to the well-known
cold-start problem. However, when integrating side information
into VAE-based recommenders, some past studies have resorted to
complicated structures that result in a lack of flexibility when inte-
grating additional types of side information. For instance, cVAE [2]
collectively encodes and decodes both interactions and user/item
side information through the same inference and generation net-
work. As a consequence, the structure of the cVAE model, such
as the dimension of the latent factors, i.e. the mean and variance
of latent user representations, has to be revised when considering
various types of side information.

Conditional-Variational-Autoencoder (CVAE) approaches are
VAE-based methods that apply conditions to constrain the learned
latent factors [4, 9, 14, 18]. These conditions are often applied for in-
tegrating external evidence. In particular, various CVAE approaches
have been applied in recommendations to leverage the user and
item side information. For instance, Pang et al. [18] proposed a
CVAE-based model (which we denote as CVAEcl f ) that integrates
multiple user features as conditions on the latent factors, while
Iqbal et al. [9] proposed a SCR model (denoted as CVAEced ) where
the styles of the items clicked by each user are introduced as con-
ditions on both encoders and decoders. These models are more
flexible than the aforementioned cVAE model at integrating ad-
ditional types of side information into the models as conditions.
However, the CVAEcl f model, as well as the cVAE model, can only
integrate either the user side information or item side information
separately, while the CVAEced model only considers features of
the five most recently clicked items as side information due to the
complexity of the model’s user profile extraction process. These
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restrictions constitute obstacles to the further enhancement of rec-
ommendation models that aim to effectively integrate both user
and item side information into expressive latent representations.

In our paper, we make use of both user and item side informa-
tion, including: user age as demographical user side information;
and categories (i.e. movie genre or grocery category) as item side
information. To learn more expressive representations and tackle
the cold-start problem, while ensuring effective recommendations
for all users, we address the integration of both user demographic
information and item categorical information into a single model by
leveraging them as part of the optimisation objective. To this end,
we propose a CVAE-based model, called the Hybrid Conditional
Variational Autoencoder (HCVAE) model, which effectively inte-
grates both user and item side information for personalised top-n
recommendation. Our comprehensive experiments use 3 different
recommendation datasets (MovieLens 100K & 1M, and Ta-Feng),
consistently applying the same user and item side information
across those datasets. Our contributions are summarised below:
•We propose a CVAE-based model, the Hybrid Conditional Vari-
ational Autoencoder (HCVAE) model, which integrates both user
and item side information for personalised top-n recommendation
tasks. Our proposed model differs from the existing CVAEcl f [18]
and CVAEced [9] models as follows: HCVAE maps the user’s item
preferences into distributions over the item categorical information
as user category preferences and integrates both user demographics
and category preferences, while the CVAEcl f model only consid-
ers user demographic information and the CVAEced model only
considers the features of recently clicked items.
• Within the HCVAE model, we propose an AE network to extract
various side information into lower dimensional embeddings and
integrate them together via concatenation, to enhance the effec-
tiveness of the model, as well as to alleviate the cold-start problem.
•Within the HCVAE model, we compare two types of condition-
ing methods, namely, conditions on the learned latent factors, or
conditions on the encoders and decoders.
• We conduct a set of comprehensive experiments on 3 datasets
from MovieLens and Ta-Feng to demonstrate the recommendation
accuracy of our proposed HCVAE model. The experimental results
demonstrate that HCVAE with the user category preferences and
conditions on the learned latent factors consistently and signifi-
cantly outperforms various state-of-the-art top-n recommendation
approaches across the three used datasets.

The remainder of the paper is organised as follows: In Section 2,
we present related work, and position our contributions in com-
parison to the existing literature. Section 3 defined the problem
statements, while Section 4 presents our proposed HCVAE model.
Our experimental setup and results are presented in Sections 5
and 6 respectively. Section 7 summarises our findings.

2 RELATEDWORK
Autoencoder (AE) [7] is a type of feedforward neural networks
and an unsupervised model. Typically, an Autoencoder consists
of three layers: the input layer, the hidden layer, and the output
layer. During the learning process, the network can be divided into
two mappings: encoder and decoder. While the encoder maps the
input data from the input layer into a hidden layer, the decoder
maps the encoded data from the hidden layer to the output layer.

In general, the hidden layer is usually used as a salient feature
representation of the input data for the purposes of dimensionality
reduction and latent features extraction [1]. Autoencoders have
been applied to recommender systems for a variety of purposes,
such as feature extraction, dimensionality reduction, or generating
predictions, as well as integrating user or item side information,
and thereby addressing the sparsity problem [1, 15, 16, 20, 21].

Variational Autoencoder (VAE) [4, 11, 12], a variant of an
Autoencoder, is also an approach that consists of two parts: a recog-
nition model (known as an encoder) and a generative model (known
as a decoder). The recognition model encodes input data into la-
tent representations. The generative model then decodes the latent
representations to generate meaningful outputs. VAE uses a Varia-
tional Bayesian method for training with an optimisation objective
containing the sum of the reconstruction loss of input data and
the KL-divergence between the variational posterior and the prior.
VAEs have been used in top-n recommendation to mitigate the
sparsity of user-item interactions by blending together various side
information [2, 3, 5, 9, 10, 18]. For instance, Chen and de Rijke [2]
proposed a collective Variational Autoencoder (cVAE) model, to
learn feature representations from side information, which simul-
taneously reconstruct the user rating matrix and user or item side
information. Both the user ratings and side information were en-
coded and decoded collectively through the same inference and
generation network. The effectiveness of top-n recommendations
generated by cVAE has been shown to improve by complementing
the sparse interactions with side information, of which user side
information was found to be more effective than item side infor-
mation. However, the cVAE model is not sufficiently flexible to be
extended with more user and item features, since they are theo-
retically constrained by the dimension of the hidden middle layer,
thereby restricting the representation learning ability of the model.

A more flexible model with various item side information, such
as genres, plots, or reviews, was introduced by Gupta et al. [5],
which used VAE as a salient feature representation of the input data
for the purposes of dimensionality reduction and latent features
extraction. They proposed a hybrid, multi-modal approach, which
they named Hybrid Variational Autoencoder (H-VAE), by integrat-
ing the extracted item latent features as embeddings. However,
according to their reported results, the effectiveness of the H-VAE
model was not significantly improved. Furthermore, the cVAE and
the H-VAE models have not addressed the integration of both user
and item side information in a single CF model.

Conditional Variational Autoencoder (CVAE) [4] is an ex-
tension of Variational Autoencoder (VAE). As a generative model,
the data generation process of the VAE model can be controlled
to generate some specific data by conditioning the encoder and
decoder. There are two variants of CVAEs: CVAE with conditions
on the learned latent factors and CVAE with conditions on the
encoders and decoders. CVAEs have also been adapted for inte-
grating user side information into recommendation frameworks
as conditions [9, 18]. For instance, Pang et al. [18] proposed an
extended Variational Autoencoder recommendation framework
based on multiple conditional user features and considered them
as a learning condition, which they called Conditional Variational
Autoencoder (CVAE). We denote this model as CVAEcl f , due to
the conditions on the learned latent factors. However, the existing
CVAEcl f model for user-based recommendations only considers



demographic information, which is generally sparse, and ignores
item information.

Meanwhile, Iqbal et al. [9] proposed Style Conditioned Recom-
mendations (SCR), called CVAEced , where the styles of the items
clicked by each user are introduced into the user’s latent representa-
tions as conditions. Conditioning is achieved in the VAE by simply
concatenating the user profiles to both the input of the encoder and
the input of the decoder. However, due to the complexity of the user
profile extraction process, only the 5 most recent clicked items were
considered for each user, thereby limiting the model’s capability
to effectively represent users’ interests. These two aforementioned
CVAE-based models have also not integrated both user and item
side information into a single CF model.

As a consequence, in this paper, we argue that the existing VAE-
based and CVAE-based models are not able to make a full use of
both user and item side information, which limits these models’
representation learning ability. These models typically consider
sparse user demographic information as user side information,
which limits the applicability of those models to datasets without
such information. Inspired by these previous VAE-based and CVAE-
based works, we propose an approach that integrates both user and
item side information – along with the users’ historical interactions
– into a single model, by leveraging user and item side information
as part of the optimisation objective.

3 PROBLEM STATEMENT
The task of personalised top-n recommendation is to generate a
ranked list of items that a user might be interested in, given the
users’ historical interactions. We use u ∈ {1, ...,U } to index users
and i ∈ {1, ..., I } to index items. Let the matrix X ∈ RU×I denote
the user-item interaction matrix. The matrix X is filled with bi-
narised values as implicit feedback, where xui = 1 denotes that
user u has clicked on or has reviewed item i while xui = 0 de-
notes that the user has not interacted with the item. The lower case
xu = [xu1, ..., xuI ] ∈ X is a vector with the binarised value of inter-
actions for each item from user u. The full user-item interaction
matrix R ∈ RU×I is divided into a training set Rtrain ∈ RU×I , a
validation set Rval ∈ RU×I and a test set Rtest ∈ RU×I . The rec-
ommender model is trained based on Rtrain while the tuning of its
hyperparameters is performed using the validation set Rval. The
final recommender model with its tuned hyperparameters is evalu-
ated by assessing the accuracy with which the model can correctly
predict the interactions in Rtest. In the following, we introduce
our proposed CVAE-based recommender model to predict those
interactions in Rtest.

4 HYBRID CONDITIONAL VARIATIONAL
AUTOENCODER ARCHITECTURE

We propose a novel Hybrid Conditional Variational Autoencoder
(HCVAE)model that effectively incorporates both user and item side
information along with the implicit interactions to model the users’
preferences. Our proposed HCVAE model is illustrated in Figure 1.
The architecture consists of three parts: user category preferences,
an Autoencoder (AE) network , and a CVAE-based network. We in-
troduce two variants of the HCVAE model, namely HCVAEcl f and
HCVAEced . The HCVAEcl f variant adopts a CVAEcl f [18] model
with conditions on the learned latent factors in the CVAE-based

network, while the HCVAEced variant adopts a CVAEced [9] model
with conditions on the encoders and decoders.

4.1 User and Item Side Information
To encode side information, we initially consider user information.
Let the user side information such as user age, or other demographic
information, be denoted as Wdem ∈ RU×S , where S is the size of
the user demographic vectors – for instance S might be the number
of distinct age intervals when using a one-hot encoding.

We now turn to the item side information. Each item that a user
interacts with will be associated to different categories. If we count
the distinct categories, rather than the items, this expresses the
preferences of the user in terms of categories, but does not encom-
pass any actual user side information (such as user demographics).
Indeed, the historical interactions of users and item side informa-
tion are provided in most of the existing recommendation datasets.
Therefore, the categorical information associated to the items that
a user has interacted with, such as the genres of movies or the
subclasses of groceries, can be seen as the user’s preferences over
all categories. Let the item one-hot categorical side information (e.g.
genre, subclass) be denoted as Icat ∈ RI×K , where K is the number
of item categories. Thus, we canmerge the user-item interactionma-
trix Rtrain with the item category matrix Icat to form a matrix of the
user’s category preferencesWpref ∈ R

U×K , as shown in Figure 1:

Wpref = Rtrain × Icat (1)

Then, we encode the user’s category preferences in the same man-
ner as for the other types of user demographic side information,
such as age, gender or occupation, by using an AE network (Sec-
tion 4.2).

4.2 An Autoencoder for User Preferences
Incorporating a high-dimensional feature vector for each user –
such asWdem andWpref – can be computationally expensive. Sim-
ilar to the previous work of Gupta et al. [5], an AE network is used
to encode the user feature vectors into a dense low-dimensional
latent space as shown in Figure 1. The AE can be trained to con-
vert the user feature vectors Wdem and Wpref into dense feature
embeddings Edem and Epref :

Edem = дφ(Wdem); Epref = дφ(Wpref ) (2)

where the дφ() function represents the encoder of the AE network.
In the following, we use the embedded user features as condi-

tions during learning. Let C denote a matrix of conditions - we
can use the embeddings as conditions directly, i.e. C = Edem or
C = Epref . However, as the categorical item side information is rep-
resented at the user level, we can use both, through the row-wise
concatenations of the matrices:

C = [Edem;Epref ] (3)

4.3 CVAE-based Network
The CVAE-based network is a fundamental component of our pro-
posed HCVAE model, in order to learn user representations and
reconstruct the input vector x ∈ X (where X = Rtrain). There are
two types of CVAE models, namely those who have conditions on
the learned latent factors, denoted CVAEcl f [18], or those who add
conditions on the encoders and decoders, denoted CVAEced [9].



Figure 1: Architecture of the HCVAE model, which consists of three parts: user category preferences, an AE network, and
a CVAE-based network. In the latter, there are two types of CVAE models: (1) CVAE with conditions on the learned latent
factors, denoted CVAEcl f ; or (2) CVAE with conditions on the encoders and decoders, denoted CVAEced .

The CVAE model with conditions on the learned latent factors
considers conditions by learning means of latent user representa-
tions that are closer to the conditions. In contrast, the CVAE model
with conditions on the encoders and decoders directly concatenates
conditions to the input layer and the latent sampling layer. In the
following, we describe these two CVAE variants and derive their
loss functions from a classical VAE loss function.

CVAE with conditions on the learned latent factors (CLF).
In a VAE network, the encoder transforms the input user-item
interactions x to low-dimensional latent representations z for each
user. The decoder part then decodes the latent representations z
to generate a probability distribution across all items for each user.
The optimisation objective is the evidence lower bound (ELBO) [12],
which is the sum of the reconstruction loss of the input data and
the negated KL-divergence between the variational posterior and
the prior. By optimising the model’s variational lower bound, the
objective function is transformed into maximising the likelihood
estimation of the mappings from latent variable zu to data xu for
each user u, logpθ (xu |zu), and minimising the differences between
the predefined simple distribution qϕ (zu |xu) and the true latent
distribution p(zu) [12]:

L(xu;θ,ϕ) = Eqϕ (zu |xu)[logpθ (xu |zu)] − DKL[qϕ (zu |xu)| |p(zu)]
(4)

When the VAE model is applied with a condition cu ∈ C on the
learned latent factors, the VAE model becomes a CVAEcl f model. In
this case, the input xu is encoded into a distribution qϕ (zu |xu, cu).
The loss function can be rewritten as follows [18]:

Lcl f = L(xu, cu;θ ,ϕ) = Eqϕ (zu |xu,cu)[logpθ (xu |zu, cu)]

− DKL[qϕ (zu |xu, cu)| |p(zu)]
(5)

In the output layer, a softmax function is applied as the activa-
tion function to map the constructed outputs into the range [0,1].
This is suitable for modeling the top-n recommendation task with
binarised interactions, since these values can be recognised as the
degree of preference on all items for each specific user [18]. The
reconstruction loss of the input data xu for user u can be computed

with a categorical cross-entropy:

LCCE =

I∑
i=1

xui logπui (6)

where I is the number of items, and πi = exi /
∑I
i=1 e

xi is the soft-
max function. The KL divergence loss is integrated with the dense
embeddings encoded with side information, i.e. Eaдe and/or Epref ,
to force the model to learn from the conditions matrix C:

LKLcl f = −
1
2

J∑
j=1

[σ 2
uj + (µuj − cuj )

2 − logσ 2
uj − 1] (7)

where J is the dimension of the latent sampled factor, µuj ∈ µu
and σuj ∈ σu are the latent mean and standard deviation of the
approximate posterior, and cuj ∈ C is the j-th condition for user u.

Therefore, the final optimisation objective of the CVAEcl f model
with conditions on the learned latent factors is:

Lcl f = LCCE + LKLcl f (8)

CVAE with conditions on the encoders and decoders (CED).
When the VAE model concatenates a condition cu to both the input
layer and the latent representations z, the VAE model becomes a
CVAEced model. In terms of the condition c, the variational lower
bound objective can be rewritten as follows [9]:

Lced = L(xu, cu;θ,ϕ) = Eqϕ (zu |xu,cu)[logpθ (xu |zu, cu)]

− DKL[qϕ (zu |xu, cu)| |p(zu |cu)]
(9)

Then the real latent variable is distributed under p(zu |cu), which
is a conditional probability distribution. This is also the same for
the decoder. The reconstruction loss of the input data xu can also be
computedwith a categorical cross-entropy, asLCCE in Equation (6).
The KL divergence loss is as follows:

LKLced = −
1
2

J∑
j=1

[σ 2
uj + µ

2
uj − logσ 2

uj − 1] (10)

where J is the dimension of the latent sampled factor, and µuj &
σuj are the latent mean and standard deviation of the approximate
posterior, respectively. Therefore, the final optimisation objective



Table 1: Statistics of Datasets

Dataset ML-100K ML-1M Ta-Feng

User 943 6040 32,266
Item 1682 3883 23,812

Interaction 100,000 1,000,209 817,741
Density 6.3% 4.3% 0.1%

User Information Age Age Age
Item Information Genre Genre Subclass

of the CVAE model with conditions on the encoders and decoders
is as follows:

Lced = LCCE + LKLced (11)
Overall, the combination of the AE network and the CVAE-

based network allows our HCVAE model, including HCVAEcl f
and HCVAEced , the ability to integrate both user information and
user category preferences over all categories of items, to learn ex-
pressive latent representations. To the best of our knowledge, the
novel structure of these HCVAE models constitutes the first work
based on CVAE with the capability to seamlessly combine user and
item side information. Our proposed HCVAE model can also be
more generally applied with other types of side information, just by
changing the item categorical information (e.g. movie certificates)
when constructing the user category preferences in Equation (1),
and/or by changing the user demographic information (e.g. user
occupation) when generating the dense feature embeddings in
Equation (2). We leave this to future work.

5 EXPERIMENTAL SETUP
In this section, we evaluate the effectiveness of our proposed Hybrid
Conditional Variational Autoencoder (HCVAE) model in compar-
ison to the existing approaches from the literature, namely the
MF-based and VAE-based/CVAE-based models. In particular, we
address four research questions:

• RQ1Can our proposed HCVAEmodel outperform theMF-based,
VAE-based and CVAE-based baseline models? (Section 6.1)

• RQ2 Can the HCVAE model mitigate the cold-start user prob-
lem? (Section 6.2)

• RQ3 What are the observed effects when considering different
types of side information as conditions in the HCVAE model?
(Section 6.3)

• RQ4 What are the impacts of the two conditioning methods,
namely when considering conditions on the learned latent fac-
tors or when considering conditions on the encoders and de-
coders? (Section 6.4)

5.1 Datasets & Measures
We perform experiments on three public datasets: MovieLens-100K
(ML-100K)1, MovieLens-1M (ML-1M)2 and Ta-Feng3, which include
both user demographic information and item categorical informa-
tion, and which vary markedly in data sparsity. The MovieLens
ML-100K and ML-1M datasets are popular movie rating datasets

1https://grouplens.org/datasets/movielens/100k/
2https://grouplens.org/datasets/movielens/1m/
3https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset

while Ta-Feng is an implicit grocery transaction dataset. The statis-
tics of the MovieLens and Ta-Feng datasets are shown in Table 1.

In the MovieLens datasets, the explicit data is transformed to an
implicit form following [16] by binarising the ratings to 0 and 1.
Items rated ≥4 are marked as 1, or 0 otherwise. The age information
of users in ML-100K is divided into 7 intervals according to the
method provided by the ML-1M dataset. There are 18 movie genres
in the MovieLens datasets and each movie may belong to one or
multiple genres, otherwise its genre can be tagged as “unknown". A
binary encoding of all genres for each movie is applied to obtain a
feature vector for each movie. The Ta-Feng dataset provides implicit
grocery transaction data with the users’ age groups and the items’
grocery subclasses.

We measure the effectiveness of the personalised top-n recom-
mendations in terms of Normalised Discounted Cumulative Gain
(NDCG@n) and Recall@n. Indeed, while Recall considers all items
ranked within the first n items to be equally important, NDCG
uses a monotonically increasing discount function to emphasise
the importance of higher ranks in relation to the lower ones.

5.2 Baselines
We compare the HCVAE models with two traditional MF methods
(i.e. WMF, BPR-MF), two state-of-the-art VAE-based models (i.e.
VAECF, H-VAE) and two state-of-the-art CVAE-based models (i.e.
CVAEced , CVAEcl f ):

WMF:WeightedMatrix Factorisation [8] is a linear low-rank fac-
torisation model, which models implicit feedback with alternative
least square (ALS).

BPR-MF:Bayesian Personalised Ranking [19] is a classical method
for learning personalised rankings from implicit feedback. It is a ma-
trix factorisation method that optimises a pairwise ranking function
using negative sampling, through stochastic gradient descent.

VAECF: Variational Autoencoder Collaborative Filtering [16]
extends the VAE model to collaborative filtering for implicit feed-
back and shows a state-of-the-art performance over other neural
network approaches on several real-world datasets. It introduces
a generative model with multinomial likelihood and uses Bayesian
inference for the parameter estimation.

H-VAE: Hybrid Variational Autoencoder [5] extends the VAE
model for collaborative filtering with implicit feedback by incor-
porating item embeddings, which are learned from a VAE network
with item side information such as item categories.

CVAEced : Conditional Variational Autoencoder with conditions
on the encoders and decoders [9], called Style Conditioned Rec-
ommendations (SCR), uses a CVAE architecture, where both the
encoder and decoder are conditioned on a user profile learned from
the items’ content data. Here the user demographic information,
such as age or occupation, are used as a user profile.

CVAEcl f : Conditional Variational Autoencoder with conditions
on the learned latent factors [18] extends the VAE-based recommen-
dation framework based on multiple condition labels. This type of
CVAE concentrates on learning with condition verification signals
to ensure an exclusive latent mean factor for users with the same
conditions. In our experiments, the exclusive latent mean factor is
derived from the user demographic information, i.e. age.



5.3 Experimental Settings
All datasets are randomly split into a training set Rtrain (80% of in-
teractions), a validation set Rval (10%) and a test set Rtest (10%). The
models are trained on the training set of each dataset and tested on
the test set, while the tuning of their hyperparameters is performed
using the validation set. Predictions are made by using the training
sets as input to the VAE-based and CVAE-based models. In the test
sets, users are divided into cold-start users and normal users accord-
ing to the number of historical interactions in the training set. In the
MovieLens datasets, cold-start users are those with less than 20 his-
torical interactions in the training set, while normal users are those
with no less than 20 historical interactions in the training set. In the
Tafeng dataset, cold-start users are those with less than 10 historical
interactions in the training set, while normal users are those with
no less than 10 historical interactions in the training set. We notice
that the normal users’ average lengths of interactions are naturally
longer than those of the cold start users. Therefore, to ensure fair
comparisons, we only measure the effectiveness of top-n recom-
mendations for cold-start users in terms of NDCG@1. This means
that we only consider the first clicked item and the items at the
top-1 position. In each dataset, only the user age information and
the item categorical information are considered as side information
in both the baseline models and our proposed HCVAE variants.

An Adam optimiser is applied for the model optimisation and
parameter update. The hyperparameters are tuned on the validation
set by applying a grid search. The hyperparameters of the HCVAE
models, namely the size of the latent dimensions, J , in {5, 10, 15,
20}, and the number of latent factors in the embeddings matrices,
Epref and Edem , are both varied in the range [2..10]. Similarly, for
the training hyperparameters, the learning rate is varied in {0.1,
0.01, 0.001, 0.0001}, and the batch size in {1, 8, 16, 32}.4

6 EXPERIMENTAL RESULTS
In this section, we analyse the experimental results with respect to
the four research questions stated in Section 5, concerning recom-
mendation effectiveness (Section 6.1), cold-start vs. normal users
(Section 6.2), impacts of side information (Section 6.3) and impacts
of the conditioning methods with conditions on the learned latent
factors or conditions on the encoders and decoders (Section 6.4).

6.1 HCVAEs vs. Baselines
Table 2 shows the obtained performances of the models on our used
datasets in term of NDCG@1, NDCG@5 and Recall@5. For each
dataset, we compare the performances of our proposed HCVAE
model with conditions on the learned latent factors, or with condi-
tions on the encoders and decoders, i.e. HCVAEced and HCVAEcl f ,
with the performances of the MF-based, VAE-based and CVAE-
based baseline models.

More specifically, Table 2 contains three parts: The first part
reports the effectiveness of the baselines (i.e., the MF-based, VAE-
based and CVAE-based models). The second part reports the per-
formances of our proposed HCVAE model variants (i.e. HCVAEced
and HCVAEcl f ) with different user and item side information. For
each dataset and metric, the third part of the table reports the im-
provements of the best performing model in the second part of the
4For replicability, the supplementary material reports the used hyperparameter values,
see http://dx.doi.org/10.5525/gla.researchdata.1043.

table in comparison to the best baseline model in the first part of the
table. The best performing results in the first and second parts of
the table are underlined, while the best overall performing results
are highlighted in bold in Table 2. * and † respectively denote sig-
nificant differences in comparison to the HCVAEcl f (C) and (A+C)
models for the given metric, according to the paired t-test, p < 0.05.
Furthermore, we vary the applied side information: for both of the
Movielens datasets and the Ta-Feng dataset, the available user side
information pertains to the demographic characteristics of users, i.e.
age, denoted (A); The user categorical preferences – derived from
the users’ historical interactions and the item categorical informa-
tion, as per Section 4.1 – are denoted by (C); Finally, recall that
H-VAE uses categorical item side information, but does not convert
it into user categorical preferences – we denote it as H-VAE (C*).

Comparing the results in the first and second parts of the table,
we observe that when using the conditioning method with condi-
tions on the learned latent factors together with the integration of
the user category preferences, our HCVAEcl f (C) and HCVAEcl f
(A + C) models achieve the best overall performances compared
to the baseline models and the other HCVAE models. Indeed, the
HCVAEcl f (C) model is significantly (paired t-test, p < 0.05) more
effective than the highest performing baselines for each metric
and dataset. The third part of the table indicates that the effec-
tiveness of our proposed HCVAEcl f (C) model can be improved
by 2% - 8% across all metrics and datasets. The HCVAEcl f (A + C)
model outperforms all baseline models - and by a significant margin
(paired t-test, p < 0.05) for all datasets and metrics except ML-100K.
HCVAEcl f (A + C) also significantly outperforms all HCVAEced
models, although it exhibits significantly lower performance than
the HCVAEcl f (C) model for the ML-1M and Ta-Feng datasets. The
observed high effectiveness of the HCVAEcl f (C) and HCVAEcl f (A
+ C) models across all three datasets demonstrates that the dense
user embeddings of the user category preferences with conditions
on the learned latent factors can effectively augment the histor-
ical interactions with a better representation of the interactions
between users and items. Overall, the results demonstrate that our
proposed HCVAE model can not only significantly outperform the
MF-based models (WMF and BPR-MF), but it can also significantly
outperform recent strong VAE-based recommenders such as the
VAE-based models (VAECF, H-VAE) and the CVAE-based models
(CVAEced , CVAEcl f ). These results address research question RQ1.

6.2 Cold-Start vs. Normal Users
Table 3 shows the performances of the VAE-based and CVAE-based
baseline models in comparison to our proposed models on cold-
start users on each dataset in terms of NDCG@1, while Table 4
shows the performances of the same models for normal users on
each dataset. For assessing the performances of the models with
both cold-start and normal users, we select the VAECF, CVAEced
and CVAEcl f models as baselines, due to their best performances
among all of the baseline models shown in Table 2.

To address RQ2, we compare our proposed HCVAE models with
the selected three baseline models in the first part of both Table 3
and Table 4. From the tables, we observe that – as expected from
Table 2 – HCVAEcl f (C) consistently and significantly outperforms
VAECF, CVAEced (A), CVAEcl f (A), HCVAEced (C) and HCVAEced



Table 2: HCVAEs and baselines ranking performances. The best performing results in each section are underlined. % Improv.
indicates the improvements by the best performing model on each metric and dataset in the second part over the best one in
the first part of the table. The best overall performing results are highlighted in bold. * and †denotes a significant difference
in terms of paired t-test with p < 0.05, compared to HCVAEcl f (C) and HCVAEcl f (A + C), respectively.

Model ML-100K ML-1M Ta-Feng
NDCG@1 NDCG@5 Recall@5 NDCG@1 NDCG@5 Recall@5 NDCG@1 NDCG@5 Recall@5

WMF 0.0566*† 0.0709*† 0.0670*† 0.0904*† 0.0886*† 0.0582*† 0.0208*† 0.0246*† 0.0284*†
BPR-MF 0.1505* 0.1512* 0.1179*† 0.1660*† 0.1520*† 0.0869*† 0.0282*† 0.0262*† 0.0265*†
VAECF 0.1508* 0.1587* 0.1329* 0.1702*† 0.1521*† 0.0917*† 0.0287*† 0.0295*† 0.0315*†

H-VAE (C*) 0.1529* 0.1569* 0.1303* 0.1663*† 0.1488*† 0.0889*† 0.0287*† 0.0293*† 0.0311*†
CVAEced (A) 0.1479*† 0.1478*† 0.1198*† 0.1743*† 0.1546*† 0.0875*† 0.0300*† 0.0301*† 0.0315*†
CVAEcl f (A) 0.1456*† 0.1582* 0.1341 0.1704*† 0.1523*† 0.0913*† 0.0302*† 0.0313*† 0.0335*

HCVAEced (C) 0.1462*† 0.1443*† 0.1171*† 0.1673*† 0.1507*† 0.0872*† 0.0284*† 0.0301*† 0.0322*†
HCVAEced (A + C) 0.1479*† 0.1486*† 0.1212*† 0.1667*† 0.1495*† 0.0849*† 0.0280*† 0.0301*† 0.0322*†
HCVAEcl f (C) 0.1590 0.1643 0.1377 0.1811 0.1626 0.0990 0.0309 0.0322 0.0346

HCVAEcl f (A + C) 0.1549 0.1607 0.1363 0.1773 0.1588* 0.0967* 0.0307 0.0318* 0.0338*

% Improv. 3.99 3.53 2.68 3.90 5.17 7.96 2.32 2.88 3.28

(A + C), in terms of NDCG@1, across all datasets, and for both cold-
start and normal users. The bottom rows of Table 3 and Table 4
show the percentage improvements of the best HCVAE approach
over the strongest baseline approach. In general, for two of the
three datasets, the observed improvements are larger for normal
users (the exception is the ML-1M dataset). This suggests that, as
expected, resorting to content features, such as representing users’
preferences using categories can benefit cold-start users. Therefore,
in response to research question RQ2, we find that our proposed
HCVAEcl f (C) and HCVAEcl f (A + C) models, which take the
user category preferences into account, can alleviate the cold-start
problem while ensuring better recommendations for all users.

6.3 Impact of Side Information
To address RQ3, the second parts of Table 2 - 4 examine the com-
parative performances of the HCVAEced and HCVAEcl f models
with different user and item side information. In the first part of
these tables, the CVAEced (A) model is equivalent to HCVAEced
(A) because it uses the same structure when integrating the age
information only. Similarly, the CVAEcl f (A) model is also equiv-
alent to the HCVAEcl f (A) model for the same reason as for the
CVAEced (A) model. Firstly, focussing on HCVAEcl f , we observe
that the HCVAEcl f (C) model performs significantly better than
the CVAEcl f (A) model in terms of all metrics on the three datasets,
except for Recall@5 on the ML-100K dataset. We can also observe
the same significant improvements in terms of NDCG@1 in both
Table 3 and Table 4. Meanwhile, the HCVAEcl f (A + C) model also
performs better than the CVAEcl f (A) model in terms of all metrics
on the three datasets across Tables 2, 3 and 4.

Based on these observations, we conclude that using the item
categorical information as a means of representing user preferences
(denoted C) is more informative than using the user age demograph-
ics (denoted A). This is further supported by the fact that HCVAEcl f
(A + C) is statistically indistinguishable from HCVAEcl f (C). More-
over, we note that HCVAEcl f (C) significantly outperforms H-VAE
(C*), suggesting that integrating the item categorical information
as a means of representing user preferences is more effective than
using the item categories as item side information alone.

Table 3: As per Table 2, but only for cold-start users.

Model ML-100K ML-1M Ta-Feng
NDCG@1 NDCG@1 NDCG@1

VAECF 0.1164 0.0791 0.0271*†
CVAEced (A) 0.0982*† 0.0580*† 0.0261*†
CVAEcl f (A) 0.1073*† 0.0780* 0.0277*†

HCVAEced (C) 0.0719*† 0.0538*† 0.0273*†
HCVAEced (A + C) 0.0881*† 0.0503*† 0.0271*†
HCVAEcl f (C) 0.1286 0.0792 0.0285

HCVAEcl f (A + C) 0.1205 0.0782 0.0283

% Improv. 10.48 0.13 2.89

On the other hand, the HCVAEced models present a notably dif-
ferent situation compared to HCVAEcl f . Indeed, in Table 2, the
HCVAEced (C) and HCVAEced (A + C) models perform worse
than the VAECF model for all metrics on the ML-100K and ML-
1M datasets. We observe a similar conclusions on the Ta-Feng
dataset for all metrics except NDCG@1. This indicates that the
proposed user category preferences are not effective at enhancing
the HCVAEced (C) and HCVAEced (A + C) models to learn more
expressive and personalised representations.

Overall, for RQ3, based on the observed results for HCVAEcl f ,
we conclude that integrating the item categorical information as
a means of representing user preferences is more effective than
using the item categories as item side information alone, and is
more effective than the user demographic side information.

6.4 Impact of Conditioning Methods
Finally, to address RQ4, we compare the effectiveness of our pro-
posed HCVAEmodels with different conditioning methods with the
effectiveness of all the CVAE-based baseline models in Tables 2-4.
As mentioned above, our HCVAEcl f (C) models achieve the best
overall performance compared to the baseline models and other
HCVAE models, across all users (Section 6.1) as well as for both the
cold-start and normal users (Section 6.2). The HCVAEcl f (A + C)
model also significantly outperforms the CVAEced and HCVAEced
models with various side information. We conclude that the CLF
conditioning method – which uses conditions on the learned latent



Table 4: As per Table 2, but only for normal users.

Model ML-100K ML-1M Ta-Feng
NDCG@1 NDCG@1 NDCG@1

VAECF 0.1647* 0.1910*† 0.0292*†
CVAEced (A) 0.1705 0.2012* 0.0314*
CVAEcl f (A) 0.1611* 0.1915*† 0.0312*

HCVAEced (C) 0.1611* 0.1928*† 0.0286*†
HCVAEced (A + C) 0.1672* 0.1903*† 0.0287*†
HCVAEcl f (C) 0.1713 0.2045 0.0318

HCVAEcl f (A + C) 0.1689 0.2000 0.0316

% Improv. 0.47 1.64 1.27

factors – is significantly better than the CEF method – which con-
ditions instead on the encoders and decoders – when integrated
into our proposed HCVAE models with user category preferences.

If there is only demographic information available, we need how-
ever to be more cautious about the selection between these two
methods. In Table 2, CVAEcl f (A) shows a better overall perfor-
mance on both the ML-100K and Ta-Feng datasets, while it per-
forms worse than CVAEced (A) in terms of NDCGs on the ML-1M
dataset. Table 3 and Table 4 provide a clear comparison between
the cold-start and normal users with different sparsities. When the
interactions of users are sparse, the CVAEcl f (A) model performs
better than CVAEced (A) overall on all metrics and datasets, as
shown in Table 3. However, we also note that the CVAEcl f (A)
model performs worse than the VAECF model without side infor-
mation on ML-100K and ML-1M in Table 3. Moreover, when only
normal users are considered, CVAEced (A) performs better than
CVAEcl f (A) in terms of NDCG@1 on the ML-100K, ML-1M and
Ta-Feng datasets.

Therefore, in our proposed HCVAE models, we argue that it is
better to integrate conditions, i.e. user demographic information
and user category preferences, by using conditions on the learned
latent factors. Indeed, the combination of the HCVAE model with
conditions on the learned latent factors and using the user category
preferences, i.e. HCVAEcl f (C), shows more advantages over other
proposed models with various side information, in that significant
improvements over all baseline models can be achieved without
the need for sparse demographic information.

7 CONCLUSIONS
In this paper, we proposed a new recommendation model, called
Hybrid Conditional Variational Autoencoder (HCVAE), which is a
CVAE-based model that can integrate both user and item side infor-
mation. In particular, the user category preferences are computed
by mapping the user’s item preferences into distributions over the
item category side information. The user feature embeddings are
extracted from the user demographics by an AE network. More-
over, the dense user feature vectors are concatenated together as
conditions of the CVAE-based network to control the encoding and
decoding processes.

Our experiments on the MovieLens-100K, MovieLens-1M and
Ta-Feng datasets showed that our HCVAEcl f (C) model with addi-
tional side information achieves significantly better performances
by 2% - 8% than other baseline models for personalised top-n recom-
mendation. Our reported results also showed that the HCVAEcl f

(C) model with conditions on the learned latent factors and user
category preferences can alleviate the cold-start problem and avoid
the sparse demographic information.

For future work, we plan to integrate more types of user demo-
graphic information (e.g. occupation) and item categorical informa-
tion (e.g. movie certificates, product functions) to further enrich the
latent representations of users. We also plan to extend the HCVAE
model to incorporate additional neural networks such as Convolu-
tional Neural Networks which would allow to capture the semantic
properties of the users’ reviews information and thereby further
enhance the quality of recommendations.
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