skip to main content
research-article

Pinball Loss Twin Support Vector Clustering

Published:21 June 2021Publication History
Skip Abstract Section

Abstract

Twin Support Vector Clustering (TWSVC) is a clustering algorithm inspired by the principles of Twin Support Vector Machine (TWSVM). TWSVC has already outperformed other traditional plane based clustering algorithms. However, TWSVC uses hinge loss, which maximizes shortest distance between clusters and hence suffers from noise-sensitivity and low re-sampling stability. In this article, we propose Pinball loss Twin Support Vector Clustering (pinTSVC) as a clustering algorithm. The proposed pinTSVC model incorporates the pinball loss function in the plane clustering formulation. Pinball loss function introduces favorable properties such as noise-insensitivity and re-sampling stability. The time complexity of the proposed pinTSVC remains equivalent to that of TWSVC. Extensive numerical experiments on noise-corrupted benchmark UCI and artificial datasets have been provided. Results of the proposed pinTSVC model are compared with TWSVC, Twin Bounded Support Vector Clustering (TBSVC) and Fuzzy c-means clustering (FCM). Detailed and exhaustive comparisons demonstrate the better performance and generalization of the proposed pinTSVC for noise-corrupted datasets. Further experiments and analysis on the performance of the above-mentioned clustering algorithms on structural MRI (sMRI) images taken from the ADNI database, face clustering, and facial expression clustering have been done to demonstrate the effectiveness and feasibility of the proposed pinTSVC model.

References

  1. Alzheimer’s Association2018. 2018 Alzheimer’s disease facts and figures. Alzh. Dement. 14, 3 (2018), 367–429.Google ScholarGoogle ScholarCross RefCross Ref
  2. Lan Bai, Yuan-Hai Shao, Wei-Jie Chen, Zhen Wang, and Nai-Yang Deng. 2020. Multiple flat projections for cross-manifold clustering. arXiv preprint arXiv:2002.06739 (2020).Google ScholarGoogle Scholar
  3. Lan Bai, Yuan-Hai Shao, Zhen Wang, and Chun-Na Li. 2019. Clustering by twin support vector machine and least square twin support vector classifier with uniform output coding. Knowl.-based Syst. 163 (2019), 227–240.Google ScholarGoogle Scholar
  4. James C. Bezdek, Robert Ehrlich, and William Full. 1984. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 10, 2--3 (1984), 191–203.Google ScholarGoogle ScholarCross RefCross Ref
  5. Catherine L. Blake and C. J. Merz. 1998. UCI repository of machine learning databases. http://www.ics.uci.edu/∼mlearn/MLRepository.html.Google ScholarGoogle Scholar
  6. Paul S. Bradley and Olvi L. Mangasarian. 2000. K-plane clustering. J. Glob. Optim. 16, 1 (2000), 23–32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Alistair Burns and Steve Iliffe. 2009. Alzheimer’s disease. BMJ 338 (2009), b158.Google ScholarGoogle ScholarCross RefCross Ref
  8. Vladimir Cherkassky and Yunqian Ma. 2004. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 17, 1 (2004), 113–126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Andreas Christmann and Ingo Steinwart. 2008. How SVMs can estimate quantiles and the median. In Proceedings of the International Conference on Advances in Neural Information Processing Systems. 305–312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Mach. Learn. 20, 3 (01 Sep. 1995), 273–297. DOI:https://doi.org/10.1007/BF00994018 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Christos Davatzikos, Susan M. Resnick, X. Wu, P. Parmpi, and Christopher M. Clark. 2008. Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. Neuroimage 41, 4 (2008), 1220–1227.Google ScholarGoogle ScholarCross RefCross Ref
  12. Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, Jan. (2006), 1–30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Roger Fletcher. 2013. Practical Methods of Optimization. John Wiley & Sons. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Giovanni B. Frisoni, Nick C. Fox, Clifford R. Jack, Philip Scheltens, and Paul M. Thompson. 2010. The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 6, 2 (2010), 67–77.Google ScholarGoogle ScholarCross RefCross Ref
  15. Gao Xinbo, Li Jie, and Xie Weixin. 2000. Parameter optimization in FCM clustering algorithms. In Proceedings of the 5th International Conference on Signal Processing Proceedings and 16th World Computer Congress 2000, Vol. 3. 1457–1461. DOI:https://doi.org/10.1109/ICOSP.2000.893376Google ScholarGoogle ScholarCross RefCross Ref
  16. Navin Goel, George Bebis, and Ara Nefian. 2005. Face recognition experiments with random projection. In Biometric Technology for Human Identification II, Anil K. Jain and Nalini K. Ratha (Eds.), Vol. 5779. International Society for Optics and Photonics, SPIE, 426–437. DOI:https://doi.org/10.1117/12.605553Google ScholarGoogle Scholar
  17. Guodong Guo, Stan Li, and Kapluk Chan. 1970. Face recognition by support vector machines. In Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Sariel Har-Peled and Soham Mazumdar. 2004. On coresets for k-means and k-median clustering. In Proceedings of the 36th ACM Symposium on Theory of Computing. 291–300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. John A. Hartigan and Manchek A. Wong. 1979. Algorithm AS 136: A k-means clustering algorithm. J. Roy. Statist. Soc. Series C (Appl. Statist.) 28, 1 (1979), 100–108.Google ScholarGoogle ScholarCross RefCross Ref
  20. Mohamad H. Hassoun. 1995. Fundamentals of Artificial Neural Networks. The MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Xiaolin Huang, Lei Shi, and Johan A. K. Suykens. 2013. Support vector machine classifier with pinball loss. IEEE Trans. Pattern Anal. Mach. Intell. 36, 5 (2013), 984–997.Google ScholarGoogle ScholarCross RefCross Ref
  22. Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. 1999. Data clustering: A review. ACM Comput. Surv. 31, 3 (1999), 264–323. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jayadeva, R. Khemchandani, and Suresh Chandra. 2007. Twin support vector machines for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell. 29, 5 (2007), 905–910. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Miyuki Kamachi, Michael Lyons, and Jiro Gyoba. 1997. The Japanese female facial expression (JAFFE) database. Retrieved from http://www.kasrl.org/jaffe.html.Google ScholarGoogle Scholar
  25. R. U. Khan, M. Tanveer, R. B. Pachori, and Alzheimer’s Disease Neuroimaging Initiative (ADNI). 2021. A novel method for the classification of Alzheimer’s disease from normal controls using magnetic resonance imaging. Exp. Syst. 38, 1 (2021), e12566.Google ScholarGoogle Scholar
  26. Sang-Ki Kim, Youn Jung Park, Kar-Ann Toh, and Sangyoun Lee. 2010. SVM-based feature extraction for face recognition. Pattern Recog. 43, 8 (2010), 2871–2881. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Arun Kumar and Madan Gopal. 2009. Least squares twin support vector machines for pattern classification. Exp. Syst. Applic. 36, 4 (2009), 7535–7543. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436–444.Google ScholarGoogle Scholar
  29. Vikramjit Mitra, Chia-Jiu Wang, and Satarupa Banerjee. 2007. Text classification: A least square support vector machine approach. Appl. Soft Comput. 7, 3 (2007), 908–914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Md Mahmudur Rahman, Sameer K. Antani, and George R. Thoma. 2011. A learning-based similarity fusion and filtering approach for biomedical image retrieval using SVM classification and relevance feedback. IEEE Trans. Inf. Technol. Biomed. 15, 4 (2011), 640–646. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. B. Richhariya and M. Tanveer. 2018. EEG Signal Classification Using Universum Support Vector Machine. Exp. Syst. Applic. 106 (2018), 169–182. DOI:https://doi.org/10.1016/j.eswa.2018.03.053Google ScholarGoogle ScholarCross RefCross Ref
  32. B. Richhariya and M. Tanveer. 2020. Least squares projection twin support vector clustering (LSPTSVC). Inf. Sci. 533 (2020), 1–23. DOI:https://doi.org/10.1016/j.ins.2020.05.001Google ScholarGoogle ScholarCross RefCross Ref
  33. B. Richhariya and M. Tanveer. 2020. A reduced universum twin support vector machine for class imbalance learning. Pattern Recog. 102 (2020), 107150. DOI:https://doi.org/10.1016/j.patcog.2019.107150Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. B. Richhariya, M. Tanveer, A. H. Rashid, and Alzheimer’s Disease Neuroimaging Initiative. 2020. Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE). Biomed. Sig. Proc. Contr. 59 (2020), 101903.Google ScholarGoogle ScholarCross RefCross Ref
  35. Craig Saunders, Alexander Gammerman, and Volodya Vovk. 1998. Ridge regression learning algorithm in dual variables. In Proceedings of the Fifteenth International Conference on Machine Learning (ICML'98). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 515--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Bernhard Schölkopf, Alexander J. Smola. 2002. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. The MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Yuan-Hai Shao, Lan Bai, Zhen Wang, Xiang-Yu Hua, and Nai-Yang Deng. 2013. Proximal plane clustering via eigenvalues. In Proceedings of the International Conference on Information Technology and Quantitative Management (ITQM’13). 41–47.Google ScholarGoogle ScholarCross RefCross Ref
  38. Yuan-Hai Shao, Chun-Hua Zhang, Xiao-Bo Wang, and Nai-Yang Deng. 2011. Improvements on twin support vector machines. IEEE Trans. Neural Netw. 22, 6 (2011), 962–968. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sweta Sharma, Reshma Rastogi, and Suresh Chandra. 2021. Large-scale twin parametric support vector machine using pinball loss function. IEEE Trans. Syst., Man, Cybern.: Syst. 51, 2 (2021), 987--1003. DOI:0.1109/TSMC.2019.2896642Google ScholarGoogle ScholarCross RefCross Ref
  40. Aixin Sun, Ee-Peng Lim, and Wee-Keong Ng. 2002. Web classification using support vector machine. In Proceedings of the 4th International Workshop on Web Information and Data Management (WIDM’02). Association for Computing Machinery, New York, NY, 96–99. DOI:https://doi.org/10.1145/584931.584952 Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. Tanveer. 2015. Application of smoothing techniques for linear programming twin support vector machines. Knowl. Inf. Syst. 45, 1 (01 Oct. 2015), 191–214. DOI:https://doi.org/10.1007/s10115-014-0786-3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. M. Tanveer. 2015. Robust and sparse linear programming twin support vector machines. Cog. Comput. 7, 1 (2015), 137–149.Google ScholarGoogle ScholarCross RefCross Ref
  43. M. Tanveer, C. Gautam, and P. N. Suganthan. 2019. Comprehensive evaluation of twin SVM based classifiers on UCI datasets. Appl. Soft Comput. 83 (2019), 105617. DOI:https://doi.org/10.1016/j.asoc.2019.105617Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. M. Tanveer, Mohammad Asif Khan, and Shen-Shyang Ho. 2016. Robust energy-based least squares twin support vector machines. Appl. Intell. 45, 1 (2016), 174–186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. M. Tanveer, T. Rajani, and M. A. Ganaie. 2019. Improved sparse pinball twin SVM. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC’19). 3287–3291.Google ScholarGoogle Scholar
  46. M. Tanveer, B. Richhariya, R. U. Khan, A. H. Rashid, P. Khanna, M. Prasad, and C. T. Lin. 2020. Machine learning techniques for the diagnosis of Alzheimer’s disease: A review. ACM Trans. Multim. Comput., Commun. Applic. 16, 1s (2020), 1–35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. M. Tanveer, A. Sharma, and P. N. Suganthan. 2019. General twin support vector machine with pinball loss function. Inf. Sci. 494 (2019), 311–327. DOI:https://doi.org/10.1016/j.ins.2019.04.032Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. M. Tanveer, Aruna Tiwari, Rahul Choudhary, and Sanchit Jalan. 2019. Sparse pinball twin support vector machines. Appl. Soft Comput. 78 (2019), 164–175. DOI:https://doi.org/10.1016/j.asoc.2019.02.022Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Zhen Wang, Xu Chen, Yuan-Hai Shao, and Chun-Na Li. 2020. Ramp-based twin support vector clustering. Neural Comput. Applic. (2020), 9885--9896. https://doi.org/10.1007/s00521-019-04511-3Google ScholarGoogle Scholar
  50. Zhen Wang, Yuan-Hai Shao, Lan Bai, and Nai-Yang Deng. 2015. Twin support vector machine for clustering. IEEE Trans. Neural Netw. Learn. Syst. 26, 10 (2015), 2583–2588.Google ScholarGoogle ScholarCross RefCross Ref
  51. Zhen Wang, Yuan-Hai Shao, Lan Bai, Chun-Na Li, and Li-Ming Liu. 2019. A general model for plane-based clustering with loss function. arXiv preprint arXiv:1901.09178 (2019).Google ScholarGoogle Scholar
  52. Eric Westman, J.-Sebastian Muehlboeck, and Andrew Simmons. 2012. Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion. NeuroImage 62, 1 (2012), 229–238. DOI:https://doi.org/10.1016/j.neuroimage.2012.04.056Google ScholarGoogle ScholarCross RefCross Ref
  53. Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis. Chemomet. Intell. Labor. Syst. 2, 1--3 (1987), 37–52.Google ScholarGoogle ScholarCross RefCross Ref
  54. Yichao Wu and Yufeng Liu. 2007. Robust truncated hinge loss support vector machines. J. Amer. Statist. Assoc. 102, 479 (2007), 974–983.Google ScholarGoogle ScholarCross RefCross Ref
  55. Hwanjo Yu and Sungchul Kim. 2012. SVM tutorial-classification, regression and ranking. Handb. Nat. Comput. 1 (2012), 479–506.Google ScholarGoogle ScholarCross RefCross Ref
  56. Alan L. Yuille and Anand Rangarajan. 2002. The concave-convex procedure (CCCP). In Proceedings of the International Conference on Advances in Neural Information Processing Systems. 1033–1040. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Pinball Loss Twin Support Vector Clustering

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Multimedia Computing, Communications, and Applications
            ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 17, Issue 2s
            June 2021
            349 pages
            ISSN:1551-6857
            EISSN:1551-6865
            DOI:10.1145/3465440
            Issue’s Table of Contents

            Copyright © 2021 Association for Computing Machinery.

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 21 June 2021
            • Accepted: 1 June 2020
            • Revised: 1 May 2020
            • Received: 1 February 2020
            Published in tomm Volume 17, Issue 2s

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format