skip to main content
survey

Computational Sustainability: A Socio-technical Perspective

Authors Info & Claims
Published:28 September 2020Publication History
Skip Abstract Section

Abstract

This is a consolidated look at computational techniques for sustainability, and their limits and possibilities. Sustainability is already well established as a concern and a topic of study and practice, given the alarming increase of environmental degradation, pollution, and other adverse effects of industrialization and urbanization. Computational sustainability, which focuses on the use of effective computational models and computational approaches to help achieve the goal of sustainability, has attracted interest from computer science researchers worldwide. We review recent work on computational techniques applied to a range of domains related to sustainability, from bio-surveillance to poverty mapping, from renewable energy production forecasting to crop disease monitoring, and from agent-based modeling to stochastic network design. In sustainable computing, we discuss some directions that have recently been explored. Finally, we analyze research directions that could be explored in the future to achieve the goal of long-term environmental sustainability.

References

  1. Pragati Agrawal and Shrisha Rao. 2014. Energy-aware scheduling of distributed systems. IEEE Trans. Autom. Sci. Eng. 11, 4 (Oct. 2014), 1163--1175. DOI:https://doi.org/10.1109/TASE.2014.2308955Google ScholarGoogle ScholarCross RefCross Ref
  2. Idawaty Ahmad. 2015. A survey of energy-aware real time scheduling tools. In Proceedings of the 3rd International Conference on Green Computing, Technology and Innovation (ICGCTI’15). 19--30.Google ScholarGoogle Scholar
  3. Ishfaq Ahmad and Sanjay Ranka. 2016. Handbook of Energy-aware and Green Computing -- Two Volume Set. CRC Press.Google ScholarGoogle Scholar
  4. Abdulla M. Al-Qawasmeh, Sudeep Pasricha, Anthony A. Maciejewski, and Howard Jay Siegel. 2015. Power and thermal-aware workload allocation in heterogeneous data centers. IEEE Trans. Comput. 64, 2 (Feb. 2015), 477--491. DOI:https://doi.org/10.1109/TC.2013.116Google ScholarGoogle ScholarCross RefCross Ref
  5. Blake Alcott. 2005. Jevons’ paradox. Ecol. Econ. 54, 1 (July 2005), 9--21. DOI:10.1016/j.ecolecon.2005.03.020Google ScholarGoogle ScholarCross RefCross Ref
  6. Francisco Almeida, Marcos D. Assunção, Jorge Barbosa, Vicente Blanco, Ivona Brandic, Georges Da Costa, Manuel F. Dolz, Anne C. Elster, Mateusz Jarus, Helen D. Karatza, et al. 2018. Energy monitoring as an essential building block towards sustainable ultrascale systems. Sustain. Comput. Inform. Syst. 17 (Mar. 2018), 27--42.Google ScholarGoogle Scholar
  7. Ibtehaj AlMusbahi, Ola Anderkairi, Reem H. Nahhas, Bashair AlMuhammadi, and M. Hemalatha. 2017. Survey on green computing: Vision and challenges. Int. J. Comput. Applic. 167, 10 (2017).Google ScholarGoogle ScholarCross RefCross Ref
  8. Amparo Alonso-Betanzos, Noelia Sánchez-Maroño, Oscar Fontenla-Romero, J. Gary Polhill, Tony Craig, Javier Bajo, and Juan Manuel Corchado. 2017. Agent-based Modeling of Sustainable Behaviors. Springer.Google ScholarGoogle Scholar
  9. Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus. 2017. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proc. Nat. Acad. Sci. 114, 3 (2017), 462--467.Google ScholarGoogle ScholarCross RefCross Ref
  10. Mohammad Abu Alsheikh, Shaowei Lin, Dusit Niyato, and Hwee-Pink Tan. 2015. Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Commun. Surv. Tutor. 4 (Mar. 2015), 1996--2018.Google ScholarGoogle Scholar
  11. Rudy Arthur, Chris A. Boulton, Humphrey Shotton, and Hywel T. P. Williams. 2018. Social sensing of floods in the UK. PLoS One 13, 1 (2018). DOI:10.1371/journal.pone.0189327Google ScholarGoogle Scholar
  12. Hiroshi Asano, N. Hatziargyriou, R. Iravani, and C. Marnay. 2007. Microgrids: An overview of ongoing research, development, and demonstration projects. IEEE Power Energy Mag. (Jan. 2007), 78--94.Google ScholarGoogle Scholar
  13. Jocelyn L. Aycrigg, Craig Groves, Jodi A. Hilty, J. Michael Scott, Paul Beier, D. A. Boyce Jr., Dennis Figg, Healy Hamilton, Gary Machlis, Kit Muller, et al. 2016. Completing the system: Opportunities and challenges for a national habitat conservation system. BioScience 66, 9 (2016), 774--784. DOI:10.1093/biosci/biw090Google ScholarGoogle ScholarCross RefCross Ref
  14. Junwen Bai, Sebastian Ament, Guillaume Perez, John Gregoire, and Carla Gomes. 2018a. An efficient relaxed projection method for constrained non-negative matrix factorization with application to the phase-mapping problem in materials science. In Proceedings of the International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR’18), Vol. 10848. Springer, 52--62.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Junwen Bai, Yexiang Xue, Johan Bjorck, Ronan Le Bras, Brendan Rappazzo, Richard Bernstein, Santosh K. Suram, R. Bruce van Dover, John M. Gregoire, and Carla P. Gomes. 2018b. Phase-mapper: Accelerating materials discovery with AI. AI Magazine 39, 1 (2018).Google ScholarGoogle Scholar
  16. Prithviraj Banerjee, Chandrakant Patel, Cullen Bash, Amip Shah, and Martin Arlitt. 2012. Towards a net-zero data center. ACM Journal on Emerging Technologies in Computing Systems (JETC) 8, 4 (Oct. 2012). DOI:https://doi.org/10.1145/2367736.2367738Google ScholarGoogle Scholar
  17. Chandrayee Basu and Mukesh Singhal. 2016. Trust dynamics in human autonomous vehicle interaction: A review of trust models. In Proceedings of the AAAI Spring Symposium Series.Google ScholarGoogle Scholar
  18. Tanya Y. Berger-Wolf, Daniel I. Rubenstein, Charles V. Stewart, Jason A. Holmberg, Jason Parham, Sreejith Menon, Jonathan Crall, Jon Van Oast, Emre Kiciman, and Lucas Joppa. 2017. Wildbook: Crowdsourcing, computer vision, and data science for conservation. arXiv:1710.08880 (2017).Google ScholarGoogle Scholar
  19. Frans Berkhout and Julia Hertin. 2001. Impacts of information and communication technologies on environmental sustainability: Speculations and evidence. Report to the OECD, Brighton 21 (2001).Google ScholarGoogle Scholar
  20. Andrea Bianco, Reza Mashayekhi, and Michela Meo. 2017. On the energy consumption computation in content delivery networks. Sustain. Comput. Inform. Syst. 16 (Dec. 2017), 56--65. DOI:10.1016/j.suscom.2017.08.008Google ScholarGoogle Scholar
  21. Najet Bichraoui-Draper. 2015. Computational Sustainability Assessment: Agent-based Models and Agricultural Industrial Ecology. Ph.D. Dissertation. Troyes.Google ScholarGoogle Scholar
  22. Lorenz T. Biegler, Ignacio E. Grossmann, and Arthur W. Westerberg. 1997. Systematic Methods of Chemical Process Design. Prentice Hall, Old Tappan, NJ (United States).Google ScholarGoogle Scholar
  23. E. Blevis. 2007. Sustainable interaction design: Invention 8 disposal, renewal 8 reuse. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 503--512.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Eric Bonabeau. 2002. Agent-based modeling: Methods and techniques for simulating human systems. Proc. Nat. Acad. Sci. 99, suppl 3 (2002), 7280--7287. Retrieved from http://www.pnas.org/content/99/suppl_3/7280. DOI:10.1073/pnas.082080899Google ScholarGoogle ScholarCross RefCross Ref
  25. Pierre Bourque, Richard E. Fairley, et al. 2014. Guide to the Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0. Retrieved from https://www.computer.org/web/swebok.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Manuel Castelo Branco and Lúcia Lima Rodrigues. 2006. Corporate social responsibility and resource-based perspectives. J. Bus. Ethics - Springer 69, 2 (2006), 111--132. DOI:https://doi.org/10.1007/s10551-006-9071-zGoogle ScholarGoogle ScholarCross RefCross Ref
  27. G. H. Brundtland. 1987. Our Common Future (“Brundtland report”). Report of the World Commission on Environment and Development. Published by the United Nations through the Oxford University Press, Oxford.Google ScholarGoogle Scholar
  28. John Bruschi, Peter Rumsey, Robin Anliker, Larry Chu, and Stuart Gregson. 2011. Best Practices Guide for Energy-Efficient Data Center Design. Technical Report. National Renewable Energy Laboratory (NREL), U.S. Department of Energy.Google ScholarGoogle Scholar
  29. Robert Bryce. 2011. Power Hungry: The Myths of “Green” Energy and the Real Fuels of the Future. PublicAffairs.Google ScholarGoogle Scholar
  30. Coral Calero and Mario Piattini. 2015. Introduction to green in software engineering. In Green in Software Engineering. Springer, 3--27.Google ScholarGoogle Scholar
  31. Coral Calero and Mario Piattini. 2017. Puzzling out software sustainability. Sustain. Comput. Inform. Syst. 16 (2017), 117--124. DOI:https://doi.org/10.1016/j.suscom.2017.10.011Google ScholarGoogle ScholarCross RefCross Ref
  32. Michel Callon. 2009. Civilizing markets: Carbon trading between in vitro and in vivo experiments. Account. Organiz. Soc. 34, 3--4 (2009), 535--548.Google ScholarGoogle ScholarCross RefCross Ref
  33. Simon Caney and Cameron Hepburn. 2011. Carbon trading: Unethical, unjust and ineffective? Royal Inst. Philos. Supplem. 69 (2011), 201--234.Google ScholarGoogle ScholarCross RefCross Ref
  34. Swati V. Chande. 2014. Computational sustainability: An emerging research and academic discipline. Int. J. Adv. Comput. Sci. Technol. 3, 8 (Aug. 2014), 421--425.Google ScholarGoogle Scholar
  35. Paul Chatterton. 2013. Towards an agenda for post-carbon cities: Lessons from Lilac, the UK’s first ecological, affordable cohousing community. Int. J. Urban Reg. Res. 37, 5 (2013), 1654--1674.Google ScholarGoogle ScholarCross RefCross Ref
  36. R. Cheour, R. Urunela, Y. Trinquet, and M. Abid. 2013. Simulation of efficient real-time scheduling and power optimisation. Int. J. Comput. Sci. Iss. 10, 2 (Mar. 2013), 338--346.Google ScholarGoogle Scholar
  37. Maurice Cheung, Julián Mestre, David B. Shmoys, and José Verschae. 2017. A primal-dual approximation algorithm for min-sum single-machine scheduling problems. SIAM J. Disc. Math. 31, 2 (2017), 825--838. DOI:10.1137/16M1086819Google ScholarGoogle ScholarCross RefCross Ref
  38. William Clark and Nancy Dickson. 2003. Sustainability science: The emerging research program. Proc. Nat. Acad. Sci. 100, 14 (Aug. 2003), 8059--8061.Google ScholarGoogle ScholarCross RefCross Ref
  39. Brian Clegg. 2009. Eco-logic: Cutting Through the Greenwash: Truth, Lies, and Saving the Planet. Eden Project, London.Google ScholarGoogle Scholar
  40. Rosaria Conte and Mario Paolucci. 2014. On agent-based modeling and computational social science. Front. Psychol. 5 (2014), 668.Google ScholarGoogle ScholarCross RefCross Ref
  41. Anthony Costello, Mustafa Abbas, Adriana Allen, Sarah Bell, Richard Bellamy, Sharon Friel, Nora Groce, Anne Johnson, Maria Kett, Maria Lee, Caren Levy, Mark Maslin, David McCoy, Bill McGuire, Hugh Montgomery, David Napier, Christina Pagel, Jinesh Patel, Jose Antonio Puppim de Oliveira, Nanneke Redclift, Hannah Rees, Daniel Rogger, Joanne Scott, Judith Stephenson, John Twigg, Jonathan Wolff, and Craig Patterson. 2009. Managing the health effects of climate change. Lancet 373, 9676 (May 2009). DOI:https://doi.org/10.1016/S0140-6736(09)60935-1Google ScholarGoogle ScholarCross RefCross Ref
  42. Wolfgang Cramer, Alberte Bondeau, F. Ian Woodward, I. Colin Prentice, Richard A. Betts, Victor Brovkin, Peter M. Cox, Veronica Fisher, Jonathan A. Foley, Andrew D. Friend, et al. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Glob. Change Biol. 7, 4 (2001), 357--373.Google ScholarGoogle ScholarCross RefCross Ref
  43. Peter Cramton and Suzi Kerr. 2002. Tradeable carbon permit auctions: How and why to auction not grandfather. Energy Policy 30, 4 (Mar. 2002). DOI:https://doi.org/10.1016/S0301-4215(01)00100-8Google ScholarGoogle ScholarCross RefCross Ref
  44. Rosa M. Cuéllar-Franca and Adisa Azapagic. 2015. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util. 9 (Mar. 2015), 82--102. DOI:https://doi.org/10.1016/j.jcou.2014.12.001Google ScholarGoogle Scholar
  45. D. Curseu, M. Popa, D. Sirbu, and I. Stoian. 2010. Potential impact of climate change on pandemic influenza risk. In Global Warming, I. Dincer, A. Hepbasli, A. Midilli, and T. H. Karakoc (Eds.). Springer, Boston, MA, 643--657.Google ScholarGoogle Scholar
  46. Samuel A. Cushman. 2006. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv. 128, 2 (2006), 231--240.Google ScholarGoogle ScholarCross RefCross Ref
  47. Fábio Andre Souto da Silva et al. 2017. Computational sustainability for smart city design. In Proceedings of the 13th International Conference on Intelligent Environments. 60--67.Google ScholarGoogle Scholar
  48. L. Minh Dang, Syed Ibrahim Hassan, Im Suhyeon, Arun Kumar Sangaiah, Irfan Mehmood, Seungmin Rho, Sanghyun Seo, and Hyeonjoon Moon. 2018. UAV-based wilt detection system via convolutional neural networks. Sustain. Comput. Inform. Syst. (May 2018). DOI:10.1016/j.suscom.2018.05.010Google ScholarGoogle Scholar
  49. Mohammad Dastbaz, Colin Pattinson, and Babak Akhgar. 2015. Green Information Technology: A Sustainable Approach (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA.Google ScholarGoogle Scholar
  50. C. Delimitrou and C. Kozyrakis. 2013. Paragon: QoS-aware scheduling for heterogeneous datacenters. In Proceedings of the ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’13). 77--88.Google ScholarGoogle Scholar
  51. Dieter Deublein and Angelika Steinhauser. 2011. Biogas from Waste and Renewable Resources: An Introduction. John Wiley 8 Sons.Google ScholarGoogle Scholar
  52. Thomas G. Dietterich. 2009. Machine learning in ecosystem informatics and sustainability. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’09). 8--13.Google ScholarGoogle Scholar
  53. Bistra Dilkina. 2012. Computational Advances in Conservation Planning for Landscape Connectivity. Retrieved from http://www.computational-sustainability.org/compsust12/slides/Dilkina.pdf.Google ScholarGoogle Scholar
  54. C. F. DiSalvo, P. Sengers, and H. Brynjarsdóttir. 2010. Mapping the landscape of sustainable HCI. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 1975--1984.Google ScholarGoogle Scholar
  55. Yama Dixit, David A. Hodell, and Cameron A. Petrie. 2014. Abrupt weakening of the summer monsoon in northwest India ∼4100 yr ago. Geology 42, 4 (Apr. 2014). DOI:https://doi.org/10.1130/G35236.1Google ScholarGoogle Scholar
  56. Djamel Djenouri and Miloud Bagaa. 2017. Energy-aware constrained relay node deployment for sustainable wireless sensor networks. IEEE Trans. Sustain. Comput. 2, 1 (Mar. 2017), 30--42.Google ScholarGoogle ScholarCross RefCross Ref
  57. Jacobus A. Du Pisani. 2006. Sustainable development—historical roots of the concept. Environ. Sci. 3, 2 (June 2006), 83--96. DOI:https://doi.org/10.1080/15693430600688831Google ScholarGoogle ScholarCross RefCross Ref
  58. David Dudgeon, Angela H. Arthington, Mark O. Gessner, Zen-Ichiro Kawabata, Duncan J. Knowler, Christian Lévêque, Robert J. Naiman, Anne-Hélène Prieur-Richard, Doris Soto, Melanie L. J. Stiassny, et al. 2006. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 2 (2006), 163--182.Google ScholarGoogle ScholarCross RefCross Ref
  59. Steve Easterbrook. 2014. From computational thinking to systems thinking: A conceptual toolkit for sustainability computing. In Proceedings of the ICT for Sustainability Conference (ICT4S’14). Atlantis Press.Google ScholarGoogle ScholarCross RefCross Ref
  60. Jochen Eisner, Stefan Funke, and Sabine Storandt. 2011. Optimal route planning for electric vehicles in large networks. In Proceedings of the 25th AAAI Conference on Artificial Intelligence.Google ScholarGoogle Scholar
  61. Jane Elith, Steven J. Phillips, Trevor Hastie, Miroslav Dudík, Yung En Chee, and Colin J. Yates. 2011. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 1 (2011), 43--57.Google ScholarGoogle ScholarCross RefCross Ref
  62. John Elkington. 1998. Partnerships from cannibals with forks: The triple bottom line of 21st-century business. Environ. Qual. Manag. 8, 1 (1998), 37--51. DOI:https://doi.org/10.1002/tqem.3310080106Google ScholarGoogle ScholarCross RefCross Ref
  63. S. Ellner and J. Guckenheimer. 2006. Dynamic Models in Biology. Princeton University Press, Princeton, NJ.Google ScholarGoogle Scholar
  64. S. Ermon, J. Conrad, C. Gomes, and B. Selman. 2010. Playing games against nature: Optimal policies for renewable resource allocation. In Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI’10).Google ScholarGoogle Scholar
  65. Stefano Ermon, Ronan Le Bras, Santosh K. Suram, John M. Gregoire, Carla P. Gomes, Bart Selman, and Robert Bruce van Dover. 2015. Pattern decomposition with complex combinatorial constraints: Application to materials discovery. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’15). 636--643.Google ScholarGoogle Scholar
  66. Geoff Evans and Liam Phelan. 2016. Transition to a post-carbon society: Linking environmental justice and just transition discourses. Energy Policy 99 (2016), 329--339.Google ScholarGoogle ScholarCross RefCross Ref
  67. Fei Fang, Thanh H. Nguyen, Robert Pickles, Wai Y. Lam, Gopalasamy R. Clements, Bo An, Amandeep Singh, Brian C. Schwedock, Milind Tambe, and Andrew Lemieux. 2017. PAWS—A deployed game-theoretic application to combat poaching. AI Mag. 38, 1 (2017), 23.Google ScholarGoogle ScholarCross RefCross Ref
  68. Daniel A. Farber. 2012. Pollution markets and social equity: Analyzing the fairness of cap and trade. Ecol. Law Quart. 39, 1 (2012).Google ScholarGoogle Scholar
  69. Wu-chun Feng. 2014. The Green Computing Book: Tackling Energy Efficiency at Large Scale. CRC Press.Google ScholarGoogle Scholar
  70. Daniel Fink, Theodoros Damoulas, and Jaimin Dave. 2013. Adaptive spatio-temporal exploratory models: Hemisphere-wide species distributions from massively crowdsourced eBird data. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’13).Google ScholarGoogle Scholar
  71. Douglas H. Fisher. 2017. A selected summary of AI for computational sustainability. In Proceedings of the AAAI Conference on Artificial Intelligence. 4852--4857. Retrieved from https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14994.Google ScholarGoogle Scholar
  72. Douglas H. Fisher, Zimei Bian, and Selina Chen. 2016. Incorporating sustainability into computing education. IEEE Intell. Syst. 31, 5 (Sep. 2016), 93--96.Google ScholarGoogle ScholarCross RefCross Ref
  73. Douglas H. Fisher, Jacqueline Cameron, Tamara Clegg, and Stephanie August. 2018. Integrating social good into CS education. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education (SIGCSE’18). ACM, New York, NY, 130--131. DOI:https://doi.org/10.1145/3159450.3159622Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Dr.-Ing. Thomas Fleissner. 2019. Artificial Intelligence and CSR—Implementation of new possibilities. Retrieved from https://dfge.de/en/sustainability-intelligence/artificial-intelligence-csr/.Google ScholarGoogle Scholar
  75. Alcides Fonseca and Bruno Cabral. 2017. Understanding the impact of task granularity in the energy consumption of parallel programs. Sustain. Comput. Inform. Syst. (Nov. 2017). DOI:10.1016/j.suscom.2017.10.014Google ScholarGoogle Scholar
  76. Kenneth M. Ford, Clark Glymour, and Patrick J. Hayes. 1997. On the other hand... Cognitive prostheses. AI Mag. 18, 3 (1997), 104.Google ScholarGoogle Scholar
  77. Karen A. Frenkel. 2009. Computer science meets environmental science. In Communications of the ACM (9), Vol. 52. ACM, 23. DOI:https://doi.org/10.1145/1562164.1562174Google ScholarGoogle Scholar
  78. A. Garchitorena, S. H. Sokolow, B. Roche, C. N. Ngonghala, M. Jocque, A. Lund, M. Barry, E. A. Mordecai, G. C. Daily, J. H. Jones, J. R. Andrews, E. Bendavid, S. P. Luby, A. D. LaBeaud, K. Seetah, J. F. Guégan, M. H. Bonds, and G. A. De Leo. 2017. Disease ecology, health and the environment: A framework to account for ecological and socio-economic drivers in the control of neglected tropical diseases. Philos. Trans. Roy. Soc. B 372 (2017). DOI:https://doi.org/10.1098/rstb.2016.0128Google ScholarGoogle Scholar
  79. Lucas A. Garibaldi, Ingolf Steffan-Dewenter, Rachael Winfree, Marcelo A. Aizen, Riccardo Bommarco, Saul A. Cunningham, Claire Kremen, Luísa G. Carvalheiro, Lawrence D. Harder, Ohad Afik, Ignasi Bartomeus, Faye Benjamin, Virginie Boreux, Daniel Cariveau, Natacha P. Chacoff, Jan H. Dudenhöffer, Breno M. Freitas, Jaboury Ghazoul, Sarah Greenleaf, Juliana Hipólito, Andrea Holzschuh, Brad Howlett, Rufus Isaacs, Steven K. Javorek, Christina M. Kennedy, Kristin M. Krewenka, Smitha Krishnan, Yael Mandelik, Margaret M. Mayfield, Iris Motzke, Theodore Munyuli, Brian A. Nault, Mark Otieno, Jessica Petersen, Gideon Pisanty, Simon G. Potts, Romina Rader, Taylor H. Ricketts, Maj Rundlöf, Colleen L. Seymour, Christof Schüepp, Hajnalka Szentgyörgyi, Hisatomo Taki, Teja Tscharntke, Carlos H. Vergara, Blandina F. Viana, Thomas C. Wanger, Catrin Westphal, Neal Williams, and Alexandra M. Klein. 2013. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 6127 (2013), 1608--1611. DOI:https://doi.org/10.1126/science.1230200Google ScholarGoogle Scholar
  80. Shahrzad Gholami, Benjamin Ford, Fei Fang, Andrew Plumptre, Milind Tambe, Margaret Driciru, Fred Wanyama, Aggrey Rwetsiba, Mustapha Nsubaga, and Joshua Mabonga. 2017. Taking it for a test drive: A hybrid spatio-temporal model for wildlife poaching prediction evaluated through a controlled field test. In Proceedings of the European Conference on Machine Learning 8 Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD’17). Springer, 292--304.Google ScholarGoogle ScholarCross RefCross Ref
  81. James P. Gibbs. 2001. Wetland loss and biodiversity conservation. Conserv. Biol. 14, 1 (Dec. 2001), 314--317. DOI:10.1046/j.1523-1739.2000.98608.xGoogle ScholarGoogle Scholar
  82. Tamra Gilbertson, Oscar Reyes, and Larry Lohmann. 2009. Carbon Trading: How It Works and Why It Fails. Vol. 7. Dag Hammarskjöld Foundation Uppsala.Google ScholarGoogle Scholar
  83. A. Gitelson, G. Garbuzov, F. Szilagyi, K. H. Mittenzwey, A. Karnieli, and A. Kaiser. 1993. Quantitative remote sensing methods for real-time monitoring of inland waters quality. Int. J. Rem. Sens. 14, 7 (1993), 1269--1295.Google ScholarGoogle ScholarCross RefCross Ref
  84. James Glanz. 2012. Power, Pollution and the Internet. Retrieved from http://nyti.ms/VqS2fY.Google ScholarGoogle Scholar
  85. A. K. Goel. 2013. Biologically inspired design: A new program for computational sustainability. IEEE Intell. Syst. 28, 3 (May--June 2013), 80--84. DOI:https://doi.org/10.1109/MIS.2013.58Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Carla Gomes, Thomas Dietterich, Christopher Barrett, Jon Conrad, Bistra Dilkina, Stefano Ermon, Fei Fang, Andrew Farnsworth, Alan Fern, Xiaoli Fern, et al. 2019. Computational sustainability: Computing for a better world and a sustainable future. Commun. ACM 62, 9 (2019), 56--65.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. C. Gomes and B. Selman. 2007. Science of constraints. Constr. Program. Lett. 1 (2007), 15--20.Google ScholarGoogle Scholar
  88. Carla P. Gomes. 2011. Computational sustainability. In Proceedings of the International Symposium on Intelligent Data Analysis (IDA’11). 8. DOI:10.1.1.158.2293Google ScholarGoogle Scholar
  89. Luis F. Gonzalez, Glen A. Montes, Eduard Puig, Sandra Johnson, Kerrie Mengersen, and Kevin J. Gaston. 2016. Unmanned aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors 16, 1 (2016). Retrieved from http://www.mdpi.com/1424-8220/16/1/97. DOI:10.3390/s16010097Google ScholarGoogle Scholar
  90. Meredith L. Gore. 2017. Global risks, conservation, and criminology. Conserv. Criminol. (May 2017), 1--23.Google ScholarGoogle Scholar
  91. Neil S. Grigg. 2005. Water Resources Management. Wiley Online Library.Google ScholarGoogle Scholar
  92. Diarmuid Grimes, Helmut Simonis, Annabelle Pratt, and Charles Sheridan. 2012. Automated energy usage optimization for the residential sector: Impact of price tariffs. In Proceedings of the 3rd International Conference on Computational Sustainability (CompSust’12).Google ScholarGoogle Scholar
  93. Sandeep K. S. Gupta, Tridib Mukherjee, Georgios Varsamopoulos, and Ayan Banerjee. 2011. Research directions in energy-sustainable cyber-physical systems. Sustain. Comput. Inform. Syst. 1, 1 (Mar. 2011), 57--74.Google ScholarGoogle Scholar
  94. G. Hardin. 1968. The tragedy of the commons. Science 162, 3859 (1968), 1243--1248.Google ScholarGoogle Scholar
  95. Robert R. Harmon and Nora Auseklis. 2009. Sustainable IT services: Assessing the impact of green computing practices. In Proceedings of the Portland International Conference on Management of Engineering 8 Technology (PICMET’09).. IEEE, 1707--1717.Google ScholarGoogle Scholar
  96. Kyle Harper. 2017. The Fate of Rome: Climate, Disease, and the End of an Empire. Princeton University Press.Google ScholarGoogle Scholar
  97. Arnd Hartmanns, Holger Hermanns, and Pascal Berrang. 2012. A comparative analysis of decentralized power grid stabilization strategies. In Proceedings of the Winter Simulation Conference (WSC’12). IEEE, 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Richard Heinberg. 2015. Afterburn: Society Beyond Fossil Fuels. New Society Publishers.Google ScholarGoogle Scholar
  99. Richard Heinberg and Daniel Lerch. 2010. The Post Carbon Reader: Managing the 21st Century’s Sustainability Crises. Watershed Media.Google ScholarGoogle Scholar
  100. Holger Hermanns and Arnd Hartmanns. 2013. An Internet-inspired approach to power grid stability/Internet-Konzepte für Stromnetzstabilität. IT-Inf. Technol. 55, 2 (2013), 45--51.Google ScholarGoogle Scholar
  101. Edgar G. Hertwich and Glen P. Peters. 2009. Carbon footprint of nations: A global, trade-linked analysis. Environ. Sci. Technol. 43, 16 (2009), 6414--6420.Google ScholarGoogle ScholarCross RefCross Ref
  102. Trevor T. Hill. 2007. Managing scarcity: Changing the paradigm for sustainable resource management. Proc. Water Environ. Fed. 16 (2007), 2659--2665. DOI:10.2175/193864707787960107Google ScholarGoogle ScholarCross RefCross Ref
  103. J. Hilton. 1984. Airborne remote sensing for freshwater and estuarine monitoring. Water Res. 18, 10 (1984), 1195--1223. DOI:https://doi.org/10.1016/0043-1354(84)90026-5Google ScholarGoogle ScholarCross RefCross Ref
  104. Lorenz M. Hilty. 2011. Information Technology and Sustainability: Essays on the Relationship between Information Technology and Sustainable Development. BoD--Books on Demand.Google ScholarGoogle Scholar
  105. Lorenz M. Hilty. 2015. Computing efficiency, sufficiency, and self-sufficiency: A model for sustainability. In Proceedings of the 1st Workshop on Computing within Limits (LIMITS’15).Google ScholarGoogle Scholar
  106. Lorenz M. Hilty and Bernard Aebischer. 2015. ICT for sustainability: An emerging research field. In ICT Innovations for Sustainability, Advances in Intelligent Systems and Computing, Vol 310. Springer, 3--36.Google ScholarGoogle Scholar
  107. Lorenz M. Hilty and Wolfgang Lohmann. 2011. The five most neglected issues in green IT. CEPIS UPGRADE 12, 4 (2011), 11--15.Google ScholarGoogle Scholar
  108. M. Shahriar Hossain, Manish Marwah, Amip Shah, Layne T. Watson, and Naren Ramakrishnan. 2014. AutoLCA: A framework for sustainable redesign and assessment of products. ACM Trans. Intell. Syst. Technol. 5, 2 (Apr. 2014), 34:1--34:21. DOI:http://doi.acm.org/10.1145/2505270Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Hsu-Chieh Hu, Stephen F. Smith, and Rick Goldstein. 2019. Cooperative schedule-driven intersection control with connected and autonomous vehicles. arXiv preprint arXiv:1907.01984 (2019).Google ScholarGoogle Scholar
  110. Xiaolong Hu, Liangsheng Shi, Jicai Zeng, Jinzhong Yang, Yuanyuan Zha, Yunjun Yao, and Guoliang Cao. 2016. Estimation of actual irrigation amount and its impact on groundwater depletion: A case study in the Hebei Plain, China. J. Hydrol. 543 (2016), 433--449. DOI:https://doi.org/10.1016/j.jhydrol.2016.10.020Google ScholarGoogle ScholarCross RefCross Ref
  111. J. Huckel. 2008. An analysis of new labour’s policy on education for sustainable development with particular reference to socially critical approaches. Environ. Educ. Res. 14, 1 (2008), 65--75.Google ScholarGoogle ScholarCross RefCross Ref
  112. Lynn Hulsey. 2017. “Smart Car” Technology May Make Roads Safer, but Some Fear Data Hacks. Retrieved from http://www.ttnews.com/articles/smart-car-technology-may-make-roads-safer-some-fear-data-hacks.Google ScholarGoogle Scholar
  113. Winifred L. Ijomah. 2010. The application of remanufacturing in sustainable manufacture. In Proceedings of the Institution of Civil Engineers-Waste and Resource Management, Vol. 163. Thomas Telford Ltd, 157--163.Google ScholarGoogle ScholarCross RefCross Ref
  114. Winifred L. Ijomah, Christopher A. McMahon, Geoffrey P. Hammond, and Stephen T. Newman. 2007. Development of design for remanufacturing guidelines to support sustainable manufacturing. Robot. Comput.-Integ. Manuf. 23, 6 (2007), 712--719.Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. International Intrasoft. 2018. In-Depth Report: Indicators for Sustainable Cities. Technical Report. European Commission DG Environment by the Science Communication Unit, UWE, Bristol. Retrieved from http://ec.europa.eu/science-environment-policy.Google ScholarGoogle Scholar
  116. Sandy Irani, Sandeep Shukla, and Rajesh Gupta. 2007. Algorithms for power savings. ACM Trans. Alg. 3, 4 (2007), 41. DOI:https://doi.org/10.1145/1290672.1290678Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. IUCN and WWF. 1980. World Conservation Strategy: Living Resource Conservation for Sustainable Development. Gland, Switzerland: IUCN. Retrieved from https://portals.iucn.org/library/efiles/documents/wcs-004.pdf.Google ScholarGoogle Scholar
  118. Jae-Wan Jang, Myeongjae Jeon, Hyo-Sil Kim, Heeseung Jo, Jin-Soo Kim, and Seungryoul Maeng. 2010. Energy reduction in consolidated servers through memory-aware virtual machine scheduling. IEEE Trans. Comput. 60, 4 (Apr. 2010), 552--564.Google ScholarGoogle Scholar
  119. Neal Jean, Marshall Burke, Michael Xie, W. Matthew Davis, David B. Lobell, and Stefano Ermon. 2016. Combining satellite imagery and machine learning to predict poverty. Science 353, 6301 (2016), 790--794.Google ScholarGoogle ScholarCross RefCross Ref
  120. William Stanley Jevons. 1865. The Coal Question: An Inquiry Concerning the Progress of the Nation, and the Probable Exhaustion of Our Coal-Mines. Macmillan and Company, London.Google ScholarGoogle Scholar
  121. Akshay Jindal and Shrisha Rao. 2017. Agent-based modeling and simulation of mosquito-borne disease transmission. In Proceedings of the 16th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’17). 426--435.Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. Nicola Jones. 2017. How the World Passed a Carbon Threshold and Why It Matters. Retrieved from https://e360.yale.edu/features/how-the-world-passed-a-carbon-threshold-400ppm-and-why-it-matters.Google ScholarGoogle Scholar
  123. Debarun Kar, Benjamin Ford, Shahrzad Gholami, Fei Fang, Andrew Plumptre, Milind Tambe, Margaret Driciru, Fred Wanyama, Aggrey Rwetsiba, Mustapha Nsubaga, et al. 2017. Cloudy with a chance of poaching: Adversary behavior modeling and forecasting with real-world poaching data. In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems (AAMAS’17). International Foundation for Autonomous Agents and Multiagent Systems, 159--167. Retrieved from http://dl.acm.org/citation.cfm?id=3091125.3091153.Google ScholarGoogle Scholar
  124. Thomas R. Karl and Kevin E. Trenberth. 2003. Modern global climate change. Science 302, 5651 (2003), 1719--1723. DOI:10.1126/science.1090228Google ScholarGoogle Scholar
  125. Anuj Karpatne, Ankush Khandelwal, Xi Chen, Varun Mithal, James Faghmous, and Vipin Kumar. 2016. Global monitoring of inland water dynamics: State-of-the-art, challenges, and opportunities. In Computational Sustainability. Studies in Computational Intelligence, Vol 645. Springer, Cham, 121--147. DOI:10.1007/978-3-319-31858-5_7Google ScholarGoogle Scholar
  126. Robert W. Kates. 2011. What kind of a science is sustainability science? Proc. Nat. Acad. Sci. 108, 49 (Dec. 2011), 19449--19450. DOI:10.1073/pnas.1116097108Google ScholarGoogle ScholarCross RefCross Ref
  127. Robert W. Kates, William C. Clark, Robert Corell, J. Michael Hall, Carlo C. Jaeger, Ian Lowe, James J. McCarthy, Hans Joachim Schellnhuber, Bert Bolin, Nancy M. Dickson, et al. 2001. Sustainability science. Science 292, 5517 (Apr. 2001), 641--642. DOI:10.1126/science.1059386Google ScholarGoogle ScholarCross RefCross Ref
  128. Tarandeep Kaur and Inderveer Chana. 2017. GreenSched: An intelligent energy-aware scheduling for deadline-and-budget constrained cloud tasks. Simul. Modell. Pract. Theor. 82 (Nov. 2017), 55--83. DOI:10.1016/j.simpat.2017.11.008Google ScholarGoogle Scholar
  129. Kristian Kersting, Christian Bauckhage, Mirwaes Wahabzada, Anne-Kathrin Mahlein, Ulrike Steiner, Erich-Christian Oerke, Christoph Römer, and Lutz Plümer. 2016. Feeding the world with big data: Uncovering spectral characteristics and dynamics of stressed plants. In Computational Sustainability. Studies in Computational Intelligence, Vol. 645. Springer, Cham, 99--120. DOI:https://doi.org/10.1007/978-3-319-31858-5_6Google ScholarGoogle Scholar
  130. Madhu Khanna and Cameron Speir. 2013. Motivations for proactive environmental management. Sustainability 5, 6 (2013), 2664--2692. DOI:https://doi.org/10.3390/su5062664Google ScholarGoogle ScholarCross RefCross Ref
  131. Himanshu Khurana, Mark Hadley, Ning Lu, and Deborah A. Frincke. 2010. Smart-grid security issues. IEEE Sec. Priv. 8, 1 (Mar. 2010), 81--85.Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. Rob Kitchin. 2014. The real-time city? Big data and smart urbanism. GeoJournal 79, 1 (2014), 1--14.Google ScholarGoogle ScholarCross RefCross Ref
  133. Rudolf Klein, Patricia Day, and Sharon Redmayne. 1996. Managing Scarcity: Priority Setting and Rationing in the National Health Service (State of Health). Open University Press.Google ScholarGoogle Scholar
  134. J. Zico Kolter. 2012. Future Directions in Sustainable Energy. Retrieved from http://www.cs.cmu.edu/ zkolter/course/15-830-f12/se_directions.pdf.Google ScholarGoogle Scholar
  135. Leonard F. Konikow. 2015. Long-term groundwater depletion in the United States. Groundwater 53, 1 (Jan./Feb. 2015), 2--9. DOI:https://doi.org/10.1111/gwat.12306Google ScholarGoogle ScholarCross RefCross Ref
  136. Andreas Krause, Daniel Golovin, and Sarah J. Converse. 2014. Sequential decision making in computational sustainability through adaptive submodularity. AI Mag. 35 (June 2014), 8--18.Google ScholarGoogle Scholar
  137. Petra M. Kuhnert, Tara G. Martin, and Shane P. Griffiths. 2010. A guide to eliciting and using expert knowledge in Bayesian ecological models. Ecol. Lett. 13, 7 (2010), 900--914.Google ScholarGoogle ScholarCross RefCross Ref
  138. Chamil Kulatunga, Kriti Bhargava, Dixon Vimalajeewa, and Stepan Ivanov. 2017. Cooperative in-network computation in energy harvesting device clouds. Sustain. Comput. Inform. Syst. 16 (Dec. 2017), 106--116.Google ScholarGoogle Scholar
  139. Julian Kunkel and Manuel F. Dolz. 2018. Understanding hardware and software metrics with respect to power consumption. Sustain. Comput. Inform. Syst. 17 (Mar. 2018), 43--54. DOI:10.1016/j.suscom.2017.10.016Google ScholarGoogle Scholar
  140. Michael D. LaGrega, Phillip L. Buckingham, and Jeffrey C. Evans. 2010. Hazardous Waste Management (reissue ed.). Waveland Press Inc.Google ScholarGoogle Scholar
  141. Rattan Lal. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304, 5677 (2004), 1623--1627. DOI:https://doi.org/10.1126/science.1097396Google ScholarGoogle Scholar
  142. Joleah B. Lamb, Bette L. Willis, Evan A. Fiorenza, Courtney S. Couch, Robert Howard, Douglas N. Rader, James D. True, Lisa A. Kelly, Awaludinnoer Ahmad, Jamaluddin Jompa, et al. 2018. Plastic waste associated with disease on coral reefs. Science 359, 6374 (2018), 460--462. DOI:10.1126/science.aar3320Google ScholarGoogle Scholar
  143. R. H. Lasseter and P. Paigi. 2004. Microgrid: A conceptual solution. In Proceedings of the IEEE 35th Annual Power Electronics Specialists Conference (PESC’04), Vol. 6. IEEE, 4285--4290.Google ScholarGoogle Scholar
  144. Jörg Lässig. 2016. Sustainable development and computing—An introduction. In Computational Sustainability. Studies in Computational Intelligence, Vol. 645. Springer, Cham, 1--12.Google ScholarGoogle Scholar
  145. Jörg Lässig, Kristian Kersting, and Katharina Morik. 2016. Computational Sustainability. Studies in Computational Intelligence, Vol. 645. Springer, Cham.Google ScholarGoogle Scholar
  146. Chandrashekhar Lavania, Shrisha Rao, and Eswaran Subrahmanian. 2012. Reducing variation in solar energy supply through frequency domain analysis. IEEE Syst. J. 6, 2 (June 2012), 196--204. DOI:10.1109/JSYST.2011.2162796Google ScholarGoogle ScholarCross RefCross Ref
  147. Etienne Le Sueur and Gernot Heiser. 2010. Dynamic voltage and frequency scaling: The laws of diminishing returns. In Proceedings of the International Conference on Power Aware Computing and Systems (HotPower’10). 1--8.Google ScholarGoogle Scholar
  148. H. M. Lee, R. Gay, W. F. Lu, and B. Song. 2006. The framework of information sharing in end-of-life for sustainable product development. In Proceedings of the 4th IEEE International Conference on Industrial Informatics. 73--78. DOI:https://doi.org/10.1109/INDIN.2006.275720Google ScholarGoogle Scholar
  149. Laurent Lefèvre and Jean-Marc Pierson. 2018. Introduction to Special Issue on Sustainable Computing for Ultrascale Computing. Retrieved from https://www.sciencedirect.com/science/article/pii/S2210537918300465.Google ScholarGoogle Scholar
  150. Nancy G. Leveson. 1995. Safeware: System Safety and Computers: A Guide to Preventing Accidents and Losses Caused By Technology. Addison-Wesley.Google ScholarGoogle Scholar
  151. Qilin Li and Mingtian Zhou. 2011. The survey and future evolution of green computing. In Proceedings of the IEEE/ACM International Conference on Green Computing and Communications. IEEE Computer Society, 230--233.Google ScholarGoogle ScholarDigital LibraryDigital Library
  152. Larry Lohmann, Niclas Hällström, Robert Österbergh, and Olle Nordberg. 2006. Carbon Trading: A Critical Conversation on Climate Change, Privatisation and Power. Dag Hammarskjöld Foundation, Uppsala, Sweden.Google ScholarGoogle Scholar
  153. Xiangyong Lu, Kaoru Ota, Mianxiong Dong, Chen Yu, and Hai Jin. 2017. Predicting transportation carbon emission with urban big data. IEEE Trans. Sustain. Comput. 2, 4 (July 2017), 333--344.Google ScholarGoogle ScholarCross RefCross Ref
  154. Shuo Ma, Yu Zheng, and Ouri Wolfson. 2014. Real-time city-scale taxi ridesharing. IEEE Trans. Knowl. Data Eng. 27, 7 (2014), 1782--1795.Google ScholarGoogle ScholarCross RefCross Ref
  155. Alessio Maffei, Seshadhri Srinivasan, Daniela Meola, Giovanni Palmieri, Luigi Iannelli, Øystein Hov Holhjem, Giancarlo Marafioti, Geir Mathisen, and Luigi Glielmo. 2017. A cyber-physical systems approach for implementing the receding horizon optimal power flow in smart grids. IEEE Trans. Sustain Comput. 3, 2 (Apr.--June 2017), 98--111. DOI:https://doi.org/10.1109/TSUSC.2017.2737144Google ScholarGoogle Scholar
  156. Natalie M. Mahowald, James T. Randerson, Keith Lindsay, Ernesto Munoz, Scott C. Doney, Peter Lawrence, Sarah Schlunegger, Daniel S. Ward, David Lawrence, and Forrest M. Hoffman. 2017a. Interactions between land use change and carbon cycle feedbacks. Global Biogeochem. Cycles 31, 1 (2017), 96--113. DOI:10.1002/2016GB005374Google ScholarGoogle ScholarCross RefCross Ref
  157. Natalie M. Mahowald, Rachel Scanza, Janice Brahney, Christine L. Goodale, Peter G. Hess, J. Keith Moore, and Jason Neff. 2017b. Aerosol deposition impacts on land and ocean carbon cycles. Curr. Clim. Change Rep. 3, 1 (Mar. 2017), 16--31. DOI:10.1007/s40641-017-0056-zGoogle ScholarGoogle ScholarCross RefCross Ref
  158. Indrani Maity and Shrisha Rao. 2010. Simulation and pricing mechanism analysis of a solar-powered electrical microgrid. IEEE Syst. J. 4, 3 (Sep. 2010), 275--284. DOI:https://doi.org/10.1109/JSYST.2010.2059110Google ScholarGoogle ScholarCross RefCross Ref
  159. Mohammad-Hossein Malekloo, Nadjia Kara, and May El Barachi. 2018. An energy-efficient and SLA compliant approach for resource allocation and consolidation in cloud computing environments. Sustain. Comput. Inform. Syst. 17 (Mar. 2018), 9--24. DOI:10.1016/j.suscom.2018.02.001Google ScholarGoogle Scholar
  160. Helena Mälkki and Kari Alanne. 2017. An overview of life cycle assessment (LCA) and research--based teaching in renewable and sustainable energy education. Renew. Sustain. Energy Rev. 69 (2017), 218--231.Google ScholarGoogle ScholarCross RefCross Ref
  161. Jens Malmodin and Dag Lundén. 2018. The energy and carbon footprint of the global ICT and E8M sectors 2010--2015. Sustainability 10, 9 (Aug. 2018). DOI:https://doi.org/10.3390/su10093027Google ScholarGoogle ScholarCross RefCross Ref
  162. Helen Mayfield, Carl Smith, Marcus Gallagher, and Marc Hockings. 2017. Use of freely available datasets and machine learning methods in predicting deforestation. Environ. Modell. Softw. 87 (Jan. 2017), 17--28. DOI:https://doi.org/10.1016/j.envsoft.2016.10.006Google ScholarGoogle Scholar
  163. N. McCullar, B. Blackmore, A. Goh, G. King, N. Kowalski, and M. Rau. 2004. Bridging the information gap: Material tracking and consumer labels to encourage sustainable computing. In Proceedings of the IEEE International Symposium on Electronics and the Environment. 275--280. DOI:https://doi.org/10.1109/ISEE.2004.1299729Google ScholarGoogle Scholar
  164. Patrick McDaniel and Stephen McLaughlin. 2009. Security and privacy challenges in the smart grid. IEEE Sec. Priv. 7, 3 (May 2009), 75--77. DOI:10.1109/MSP.2009.76Google ScholarGoogle ScholarDigital LibraryDigital Library
  165. Matthias S. Meier, Franziska Stoessel, Niels Jungbluth, Ronnie Juraske, Christian Schader, and Matthias Stolze. 2015. Environmental impacts of organic and conventional agricultural products—Are the differences captured by life cycle assessment? J. Environ. Manag. 149 (2015), 193--208.Google ScholarGoogle ScholarCross RefCross Ref
  166. Cory Merow, Matthew J. Smith, and John A. Silander Jr. 2013. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 10 (2013), 1058--1069.Google ScholarGoogle ScholarCross RefCross Ref
  167. Microsoft. 2018. Microsoft 2018 Corporate Social Responsibility report. Retrieved from https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE2IDuR.Google ScholarGoogle Scholar
  168. Wang Mingrong, Wang Mingxi, and Lang Lihua. 2017. Reconsidering carbon permits auction mechanism: An efficient dynamic model. World Econ. 40, 8 (Aug. 2017), 1624--1645. DOI:https://doi.org/10.1111/twec.12436Google ScholarGoogle Scholar
  169. Julio C. Rivera, Bernabé Hernandis, Sheila Cordeiro, José R. González, and Omar Miranda. 2015. An understanding of lifetime optimisation through sustainable strategies and intangibility in product and services. In Product Lifetimes and The Environment (PLATE'15) Conference. Nottingham Trent University. Retrieved from https://www.plateconference.org/understanding-lifetime-optimisation-sustainable-strategies-intangibility-product-services/.Google ScholarGoogle Scholar
  170. Mina Mirhosseini, Fatemeh Barani, and Hossein Nezamabadi-pour. 2017. Design optimization of wireless sensor networks in precision agriculture using improved BQIGSA. Sustain. Comput. Inform. Syst. 16 (Dec. 2017), 38--47. DOI:10.1016/j.suscom.2017.08.006Google ScholarGoogle Scholar
  171. Aditya Mishra, David Irwin, Prashant Shenoy, Jim Kurose, and Ting Zhu. 2013. GreenCharge: Managing renewable energy in smart buildings. IEEE J. Sel. Areas Commun. 31, 7 (July 2013), 1281--1293. DOI:10.1109/JSAC.2013.130711Google ScholarGoogle ScholarCross RefCross Ref
  172. Krishna B. Misra. 2008. Sustainability: Motivation and pathways for implementation. In Handbook of Performability Engineering. Springer, 843--856.Google ScholarGoogle ScholarCross RefCross Ref
  173. Sparsh Mittal. 2012. A survey of architectural techniques for DRAM power management. Int. J. High Perf. Syst. Archit. 4, 2 (Dec. 2012), 110--119.Google ScholarGoogle ScholarDigital LibraryDigital Library
  174. Sparsh Mittal. 2014. Power management techniques for data centers: A survey. arXiv:1404.6681 (April 2014).Google ScholarGoogle Scholar
  175. Santiago Molina, Angela K. Fuller, Dana J. Morin, and J. Andrew Royle. 2017. Use of spatial capture—Recapture to estimate density of Andean bears in Northern Ecuador. Ursus 28, 1 (2017), 117--126.Google ScholarGoogle ScholarCross RefCross Ref
  176. Andres Molina-Markham, George Danezis, Kevin Fu, Prashant J. Shenoy, and David E. Irwin. 2011. Designing privacy—Preserving smart meters with low-cost microcontrollers. In Proceedings of the International Conference on Financial Cryptography and Data Security. 239--253.Google ScholarGoogle Scholar
  177. M. Momtazpour, M. C. Bozchalui, N. Ramakrishnan, and R. Sharma. 2016. Installing electric vehicle charging stations city-scale: How many and where? In Computational Sustainability. Studies in Computational Intelligence, Vol 645. Springer, Cham, 149--170. DOI:10.1007/978-3-319-31858-5_8Google ScholarGoogle Scholar
  178. Hemanta Kumar Mondal, Sri Harsha Gade, Shashwat Kaushik, and Sujay Deb. 2017a. Adaptive multi-voltage scaling with utilization prediction for energy-efficient wireless NoC. 2, 4 (Aug. 2017), 382--395. DOI:10.1109/TSUSC.2017.2742219Google ScholarGoogle Scholar
  179. Hemanta Kumar Mondal, Sri Harsha Gade, Raghav Kishore, and Sujay Deb. 2017b. P2NoC: Power- and performance-aware NoC architectures for sustainable computing. Sustain. Comput. Inform. Syst. 16 (Dec. 2017), 25--37.Google ScholarGoogle Scholar
  180. Ivan Montiel. 2008. Corporate social responsibility and corporate sustainability: Separate pasts, common futures. Organiz. Environ. 21, 3 (2008), 245--269.Google ScholarGoogle ScholarCross RefCross Ref
  181. Dana J. Morin, Angela K. Fuller, J. Andrew Royle, and Chris Sutherland. 2017. Model-based estimators of density and connectivity to inform conservation of spatially structured populations. Ecosphere 8, 1 (2017). DOI:https://doi.org/10.1002/ecs2.1623Google ScholarGoogle Scholar
  182. Dustin Mulvaney. 2014. Solar’s green dilemma. Must cheaper photovoltaics come with a higher environmental price tag?IEEE Spectr. (Sep. 2014), 30--33. Retrieved from http://spectrum.ieee.org/green-tech/solar/solar-energy-isnt-always-as-green-as-you-think.Google ScholarGoogle Scholar
  183. Amrutha Muralidharan, Horia A. Maior, and Shrisha Rao. 2018. A self-governing and decentralized network of smart objects to share electrical power autonomously. In Sustainable Cloud and Energy Services: Principles and Practice, Wilson Rivera (Ed.). Springer International Publishing, Cham, 25--48. DOI:https://doi.org/10.1007/978-3-319-62238-5_2Google ScholarGoogle Scholar
  184. S. Murugesan. 2008. Harnessing green IT: Principles and practices. IT Professional 10, 1 (2008), 24--32.Google ScholarGoogle ScholarDigital LibraryDigital Library
  185. Norman Myers. 1988. Tropical deforestation and remote sensing. Forest Ecol. Manag. 23, 2--3 (Feb. 1988), 215--225. DOI:https://doi.org/10.1016/0378-1127(88)90083-7Google ScholarGoogle ScholarCross RefCross Ref
  186. A. Nagurney and M. Yu. 2011. Sustainable fashion supply chain management under oligopolistic competition and brand differentiation. Int. J. Prod. Econ. Spec. Iss. Green Manuf. Distrib. Fash. Appar. Industr. 135, 2 (2011), 532--540.Google ScholarGoogle Scholar
  187. Stefan Naumann, Markus Dick, Eva Kern, and Timo Johann. 2011. The GREENSOFT model: A reference model for green and sustainable software and its engineering. Sustain. Comput. Inform. Syst. 1, 4 (Dec. 2011), 294--304. DOI:10.1016/j.suscom.2011.06.004Google ScholarGoogle ScholarCross RefCross Ref
  188. Robert J. Nicholls, Frank M. J. Hoozemans, and Marcel Marchand. 1999. Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses. Global Environ. Change 9 (1999), 69--87.Google ScholarGoogle ScholarCross RefCross Ref
  189. Martin A. Nuñez, Anibal Pauchard, and Anthony Ricciardi. 2020. Invasion science and the global spread of SARS-CoV-2. Trends. Ecol. Evol. 35, 8 (2020), 642--645. DOI:https://doi.org/10.1016/j.tree.2020.05.004Google ScholarGoogle ScholarCross RefCross Ref
  190. Marc Orlitzky, Donald S. Siegel, and David A. Waldman. 2011. Strategic corporate social responsibility and environmental sustainability. Bus. Soc. 50, 1 (2011), 6--27.Google ScholarGoogle ScholarCross RefCross Ref
  191. Claudia Pahl-Wostl. 2007. Transitions towards adaptive management of water facing climate and global change. Water Res. Manag. 21, 1 (2007), 49--62.Google ScholarGoogle ScholarCross RefCross Ref
  192. Thanos Papadopoulos, Angappa Gunasekaran, Rameshwar Dubey, Nezih Altay, Stephen J. Childe, and Samuel Fosso-Wamba. 2016. The role of big data in explaining disaster resilience in supply chains for sustainability. J. Clean. Prod. 142 (2016), 1108--1118. DOI:10.1016/j.jclepro.2016.03.059Google ScholarGoogle ScholarCross RefCross Ref
  193. Jong Hyuk Park and Han-Chieh Chao. 2017. Advanced IT-based future sustainable computing. Sustainability 9, 5 (May 2017). DOI:10.3390/su9050757Google ScholarGoogle Scholar
  194. Simon Parsons, Juan A. Rodriguez-Aguilar, and Mark Klein. 2011. Auctions and bidding: A guide for computer scientists. Comput. Surv. 43, 2 (Jan. 2011). DOI:10.1145/1883612.1883617Google ScholarGoogle ScholarDigital LibraryDigital Library
  195. Debprakash Patnaik, Manish Marwah, Ratnesh Sharma, and Naren Ramakrishnan. 2009. Sustainable operation and management of data center chillers using temporal data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’09). ACM, 1305--1314.Google ScholarGoogle ScholarDigital LibraryDigital Library
  196. J. Jeffrey Peirce, P. Aarne Vesilind, and Ruth Weiner. 1998. Environmental Pollution and Control. Butterworth-Heinemann.Google ScholarGoogle Scholar
  197. Steven Pelley, David Meisner, Thomas F. Wenisch, and James W. VanGilder. 2009. Understanding and abstracting total data center power. In Proceedings of the Workshop on Energy-Efficient Design (WEED’09), Vol. 11.Google ScholarGoogle Scholar
  198. Birgit Penzenstadler, Ankita Raturi, Debra Richardson, and Bill Tomlinson. 2014. Safety, security, now sustainability: The non-functional requirement for the 21st century. IEEE Softw. 31, 3 (2014), 40--47.Google ScholarGoogle ScholarCross RefCross Ref
  199. Steven J. Phillips and Miroslav Dudík. 2008. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 2 (2008), 161--175.Google ScholarGoogle ScholarCross RefCross Ref
  200. Jean-Marc Pierson. 2015. Large Scale Distributed Systems and Energy Efficiency: A Holistic View. John Wiley 8 Sons.Google ScholarGoogle Scholar
  201. Michael Pinedo. 2009. Planning and Scheduling in Manufacturing and Services (2nd ed.). Springer.Google ScholarGoogle Scholar
  202. Michael L. Pinedo. 2012. Scheduling: Theory, Algorithms, and Systems (4th ed.). Springer.Google ScholarGoogle ScholarCross RefCross Ref
  203. John M. Polimeni. 2012. The Jevon’s Paradox and the Myth of Resource Efficiency Improvements. Earthscan.Google ScholarGoogle Scholar
  204. Kathleen L. Prudic, Kent P. McFarland, Jeffrey C. Oliver, Rebecca A. Hutchinson, Elizabeth C. Long, Jeremy T. Kerr, and Maxim Larrivée. 2017. eButterfly: Leveraging massive online citizen science for butterfly conservation. Insects 8, 2 (2017), 53.Google ScholarGoogle ScholarCross RefCross Ref
  205. Reid Pryzant, Stefano Ermon, and David Lobell. 2017. Monitoring Ethiopian wheat fungus with satellite imagery and deep feature learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW’17). IEEE, 1524--1532. DOI:https://doi.org/10.1109/CVPRW.2017.196Google ScholarGoogle ScholarCross RefCross Ref
  206. John Alexander Quinn, Kevin Leyton-Brown, and Ernest Mwebaze. 2011. Modeling and monitoring crop disease in developing countries. In Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI’11).Google ScholarGoogle Scholar
  207. Naren Ramakrishnan, Manish Marwah, Amip Shah, Debprakash Patnaik, M. Hossain, Naren Sundaravaradan, and Chandrakant Patel. 2012. Data mining solutions for sustainability problems. IEEE Potent. 31, 6 (Nov. 2012), 28--34.Google ScholarGoogle ScholarCross RefCross Ref
  208. Sarvapali D. Ramchurn, Perukrishnen Vytelingum, Alex Rogers, and Nicholas R. Jennings. 2012. Putting the “Smarts” into the smart grid: A grand challenge for artificial intelligence. Commun. ACM 55, 4 (Apr. 2012), 86--97. DOI:10.1145/2133806.2133825Google ScholarGoogle ScholarDigital LibraryDigital Library
  209. Thomas Rauber, Gudula Rünger, and Matthias Stachowski. 2018. Performance and energy metrics for multi-threaded applications on DVFS processors. Sustain. Comput. Inform. Syst. 17 (Mar. 2018), 55--68.Google ScholarGoogle Scholar
  210. D. A. Relman, M. A. Hamburg, E. R. Choffnes, and A. Mack, Eds. 2008. Global Climate Change and Extreme Weather Events: Understanding the Contributions to Infectious Disease Emergence: Workshop Summary. The National Academies Press, Washington, DC. Retrieved from https://www.nap.edu/catalog/12435/global-climate-change-and-extreme-weather-events-understanding-the-contributions.Google ScholarGoogle Scholar
  211. Mark D. Reynolds, Brian L. Sullivan, Eric Hallstein, Sandra Matsumoto, Steve Kelling, Matthew Merrifield, Daniel Fink, Alison Johnston, Wesley M. Hochachka, Nicholas E. Bruns, et al. 2017. Dynamic conservation for migratory species. Sci. Adv. 3, 8 (2017). DOI:10.1126/sciadv.1700707Google ScholarGoogle Scholar
  212. Emmanouil S. Rigas, Sarvapali D. Ramchurn, and Nick Bassiliades. 2014. Managing electric vehicles in the smart grid using artificial intelligence: A survey. IEEE Trans. Intell. Transport. Syst. 16, 4 (2014), 1619--1635.Google ScholarGoogle ScholarCross RefCross Ref
  213. Caleb Robinson, Bistra Dilkina, Jeffrey Hubbs, Wenwen Zhang, Subhrajit Guhathakurta, Marilyn A. Brown, and Ram M. Pendyala. 2017. Machine learning approaches for estimating commercial building energy consumption. Appl. Energy 208 (Dec. 2017), 889--904.Google ScholarGoogle Scholar
  214. Sandra I. Rodriguez, Matthew S. Roman, Samantha C. Sturhahn, and Elizabeth H. Terry. 2002. Sustainability Assessment and Reporting for the University of Michigan’s Ann Arbor Campus. Center for Sustainable Systems, Report No. CSS02-04. University of Michigan, Ann Arbor, Michigan.Google ScholarGoogle Scholar
  215. David Rojas-Rueda. 2020. New transport technologies and health. In Transportation and Health: Tools, Technologies, Policies, and Developments, Mark J. Nieuwenhuijsen and Haneen Khreis (Eds.). Elsevier, 225--237. DOI:https://doi.org/10.1016/B978-0-12-819136-1.00009-7Google ScholarGoogle Scholar
  216. Daniel H. Rothman. 2015. The Earth’s carbon cycle: A mathematical perspective. Bull. Amer. Math. Soc. 52, 1 (Jan. 2015), 47--64. DOI:https://doi.org/10.1090/S0273-0979-2014-01471-5Google ScholarGoogle Scholar
  217. Cynthia Rudin, David Waltz, Roger N. Anderson, Albert Boulanger, Ansaf Salleb-Aouissi, Maggie Chow, Haimonti Dutta, Philip N. Gross, Bert Huang, Steve Ierome, et al. 2012. Machine learning for the New York City power grid. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2 (2012), 328--345.Google ScholarGoogle ScholarDigital LibraryDigital Library
  218. Martin Sachenbacher, Martin Leucker, Andreas Artmeier, and Julian Haselmayr. 2011. Efficient energy-optimal routing for electric vehicles. In Proceedings of the AAAI Conference on Artificial Intelligence, Special Track on Computational Sustainability. 1402--1407.Google ScholarGoogle Scholar
  219. Kali E. Sawaya, Leif G. Olmanson, Nathan J. Heinert, Patrick L. Brezonik, and Marvin E. Bauer. 2003. Extending satellite remote sensing to local scales: Land and water resource monitoring using high-resolution imagery. Rem. Sens. Environ. 88, 1-2 (2003), 144--156.Google ScholarGoogle ScholarCross RefCross Ref
  220. R. Schainker, P. Miller, W. Dubbelday, P. Hirsch, and Guorui Zhang. 2006. Real-time dynamic security assessment: Fast simulation and modeling applied to emergency outage security of the electric grid. IEEE Power Energy Mag. 4 (Apr. 2006), 51--58.Google ScholarGoogle Scholar
  221. Hartmut Schmeck. 2012. Challenges for ICT in Smart Energy and Electric Mobility. Retrieved from http://www.computational-sustainability.org/compsust12/slides/Schmeck.pdf.Google ScholarGoogle Scholar
  222. René Schönfelder and Martin Leucker. 2012. State-based routing for computational sustainability. In Proceedings of the 3rd International Conference on Computational Sustainability (CompSust’12).Google ScholarGoogle Scholar
  223. Abigail J. Sellen and Richard H. R. Harper. 2003. The Myth of the Paperless Office. The MIT Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  224. T. P. Shabeera, S. D. Madhu Kumar, Sameera M. Salam, and K. Murali Krishnan. 2017. Optimizing VM allocation and data placement for data-intensive applications in cloud using ACO metaheuristic algorithm. Eng. Sci. Technol. Int. J. 20, 2 (Apr. 2017), 616--628. DOI:10.1016/j.jestch.2016.11.006Google ScholarGoogle Scholar
  225. Mihir Shah and Himanshu Kulkarni. 2015. Urban water systems in India: Typologies and hypotheses. Econ. Polit. Weekly L, 30 (July 2015). Retrieved from http://www.indiawaterportal.org/sites/indiawaterportal.org/files/urban_water_systems_in_india_typologies_and_hypothesis_epw_2015.pdf.Google ScholarGoogle Scholar
  226. Daniel Sheldon, Bistra Dilkina, Adam N. Elmachtoub, Ryan Finseth, Ashish Sabharwal, Jon Conrad, Carla P. Gomes, David Shmoys, William Allen, Ole Amundsen, et al. 2012. Maximizing the spread of cascades using network design. arXiv:1203.3514 (2012).Google ScholarGoogle Scholar
  227. Roger A. Sheldon. 2014. Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chem. 16, 3 (2014), 950--963.Google ScholarGoogle ScholarCross RefCross Ref
  228. Bhagya Nathali Silva, Murad Khan, and Kijun Han. 2018. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 38 (Apr. 2018), 697--713.Google ScholarGoogle Scholar
  229. Stefan G. H. Simis, Steef W. M. Peters, and Herman J. Gons. 2005. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol. Oceanog. 50, 1 (2005), 237--245.Google ScholarGoogle ScholarCross RefCross Ref
  230. Rahul Singh, David Irwin, Prashant Shenoy, and K. K. Ramakrishnan. 2013. Yank: Enabling green data centers to pull the plug. In Proceedings of the Symposium on Networked Systems Design and Implementation (NSDI’13). 143--156.Google ScholarGoogle Scholar
  231. Johan Six, Stephen M. Ogle, F. Jay Breidt, Rich T. Conant, Arvin R. Mosier, and Keith Paustian. 2004. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Change Biol. 10, 2 (2004), 155--160.Google ScholarGoogle ScholarCross RefCross Ref
  232. Brad Smith. 2017. AI for Earth can be a game-changer for our planet. Retrieved from https://blogs.microsoft.com/on-the-issues/2017/12/11/ai-for-earth-can-be-a-game-changer-for-our-planet/.Google ScholarGoogle Scholar
  233. Malin Song, Ling Cen, Zhixia Zheng, Ron Fisher, Xi Liang, Yutao Wang, and Donald Huisingh. 2016. How would big data support societal development and environmental sustainability? Insights and practices. J. Clean. Prod. 142 (2016), 489--500.Google ScholarGoogle ScholarCross RefCross Ref
  234. Clive L. Spash. 2010. The brave new world of carbon trading. New Polit. Econ. 15, 2 (2010), 169--195.Google ScholarGoogle ScholarCross RefCross Ref
  235. Nanda Kishore Sreenivas and Shrisha Rao. 2019. Egocentric bias and doubt in cognitive agents. In Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’19).Google ScholarGoogle ScholarDigital LibraryDigital Library
  236. Robert N. Stavins. 2003. Experience with market-based environmental policy instruments. In Handbook of Environmental Economics. Vol. 1. Elsevier, 355--435.Google ScholarGoogle Scholar
  237. Thanos G. Stavropoulos, Efstratios Kontopoulos, Nick Bassiliades, John Argyriou, Antonis Bikakis, Dimitris Vrakas, and Ioannis Vlahavas. 2015. Rule-based approaches for energy savings in an ambient intelligence environment. Pervas. Mob. Comput. 19 (2015), 1--23.Google ScholarGoogle ScholarDigital LibraryDigital Library
  238. M. Stolpe, H. Blom, and K. Morik. 2016. Sustainable industrial processes by embedded real-time quality prediction. In Computational Sustainability. Studies in Computational Intelligence, Vol 645. Springer, Cham, Springer, 201--243. DOI:10.1007/978-3-319-31858-5_10Google ScholarGoogle Scholar
  239. Brian Stone Jr., Adam C. Mednick, Tracey Holloway, and Scott N. Spak. 2009. Mobile source CO2 mitigation through smart growth development and vehicle fleet hybridization. Environ. Sci. Technol. 43, 6 (2009), 1704--1710. DOI:10.1021/es8021655Google ScholarGoogle ScholarCross RefCross Ref
  240. Brian L. Sullivan, Jocelyn L. Aycrigg, Jessie H. Barry, Rick E. Bonney, Nicholas Bruns, Caren B. Cooper, Theo Damoulas, André A. Dhondt, Tom Dietterich, Andrew Farnsworth, et al. 2014. The eBird enterprise: An integrated approach to development and application of citizen science. Biol. Conserv. 169 (Jan. 2014), 31--40.Google ScholarGoogle Scholar
  241. Brian L. Sullivan, Christopher L. Wood, Marshall J. Iliff, Rick E. Bonney, Daniel Fink, and Steve Kelling. 2009. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 10 (2009), 2282--2292.Google ScholarGoogle ScholarCross RefCross Ref
  242. Piling Sun, Yueqing Xu, Zhonglei Yu, Qingguo Liu, Baopeng Xie, and Jia Liu. 2016b. Scenario simulation and landscape pattern dynamic changes of land use in the poverty belt around Beijing and Tianjin: A case study of Zhangjiakou city, Hebei Province. J. Geog. Sci. 26, 3 (2016), 272--296. DOI:10.1007/s11442-016-1268-1Google ScholarGoogle ScholarCross RefCross Ref
  243. Yunchuan Sun, Houbing Song, Antonio J. Jara, and Rongfang Bie. 2016a. Internet of Things and big data analytics for smart and connected communities. IEEE Access 4 (2016), 766--773.Google ScholarGoogle ScholarCross RefCross Ref
  244. V. Todorov and D. Marinova. 2011. Modelling sustainability. Math. Comput. Simul. 81, 7 (2011), 1397--1408.Google ScholarGoogle ScholarDigital LibraryDigital Library
  245. Brian Tokar. 1997. Earth for Sale: Reclaiming Ecology in the Age of Corporate Greenwash. South End Press, Boston.Google ScholarGoogle Scholar
  246. N. A. Treiber, J. Heinermann, and O. Kramer. 2016. Wind power prediction with machine learning. In Computational Sustainability. Studies in Computational Intelligence, Vol 645. Springer, Cham. DOI:10.1007/978-3-319-31858-5_2Google ScholarGoogle Scholar
  247. Ashutosh Trivedi and Shrisha Rao. 2018. Agent-based modeling of emergency evacuations considering human panic behavior. IEEE Trans. Comput. Soc. Syst. 5, 1 (Mar. 2018), 277--288. DOI:https://doi.org/10.1109/TCSS.2017.2783332Google ScholarGoogle ScholarCross RefCross Ref
  248. B. L. Turner and Jeremy A. Sabloff. 2012. Classic Period collapse of the Central Maya Lowlands: Insights about human environment relationships for sustainability. Proc. Nat. Acad. Sci. (2012). DOI:https://doi.org/10.1073/pnas.1210106109Google ScholarGoogle Scholar
  249. United Nations Department of Economic and Social Affairs. 2006. Sustainable Consumption and Production: Energy and Industry. Retrieved from http://www.un.org/esa/sustdev/csd/csd14/documents/bp3_2006.pdf.Google ScholarGoogle Scholar
  250. United Nations Department of Economic and Social Affairs. 2007. Sustainable Consumption and Production: Promoting Climate-friendly Household Consumption Patterns. Retrieved from http://www.un.org/esa/sustdev/publications/household_consumption.pdf.Google ScholarGoogle Scholar
  251. United Nations Sustainable Development. 2015. Hunger and Food Security. Retrieved from https://www.un.org/sustainabledevelopment/hunger/.Google ScholarGoogle Scholar
  252. Konstantina Valogianni, Wolfgang Ketter, John Collins, and Dmitry Zhdanov. 2014. Effective management of electric vehicle storage using smart charging. In Proceedings of the 28th AAAI Conference on Artificial Intelligence.Google ScholarGoogle Scholar
  253. Guido R. Van der Werf, Douglas C. Morton, Ruth S. DeFries, Jos G. J. Olivier, Prasad S. Kasibhatla, Robert B. Jackson, G. James Collatz, and James T. Randerson. 2009. CO2 emissions from forest loss. Nat. Geosci. 2, 11 (2009), 737.Google ScholarGoogle ScholarCross RefCross Ref
  254. Vasanth Venkatachalam and Michael Franz. 2005. Power reduction techniques for microprocessor systems. Comput. Surv. 37, 3 (Sep. 2005), 195--237. DOI:10.1145/1108956.1108957Google ScholarGoogle ScholarDigital LibraryDigital Library
  255. Colin C. Venters, Norbert Seyff, Christoph Becker, Stefanie Betz, Ruzanna Chitchyan, Leticia Duboc, Dan McIntyre, and Birgit Penzenstadler. 2017. Characterising sustainability requirements: A new species red herring or just an odd fish? In Proceedings of the IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Society Track (ICSE-SEIS’17). IEEE, 3--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  256. Danny Verboekend and Javier Pérez-Ramírez. 2014. Towards a sustainable manufacture of hierarchical zeolites. ChemSusChem 7, 3 (2014), 753--764.Google ScholarGoogle ScholarCross RefCross Ref
  257. M. Wackernagel and W. E. Rees. 1996. Our Ecological Footprint: Reducing Human Impact on the Earth. Gabriola Press New Society Publishing, B.C.Google ScholarGoogle Scholar
  258. David Wagman. 2018. This power plant runs on CO2. IEEE Spectr. 77 (June 2018), 27--29.Google ScholarGoogle Scholar
  259. Matthew A. Waller and Stanley E. Fawcett. 2013. Data science, predictive analytics, and big data: A revolution that will transform supply chain design and management. J. Bus. Logist. 34, 2 (2013), 77--84.Google ScholarGoogle ScholarCross RefCross Ref
  260. Kun Wang, Xiaoxuan Hu, Huining Li, Peng Li, Deze Zeng, and Song Guo. 2017. A survey on energy Internet communications for sustainability. IEEE Trans. Sustain. Comput. 2, 3 (2017), 231--254.Google ScholarGoogle ScholarCross RefCross Ref
  261. D. Patrick Webb, David A. Hutt, David C. Whalley, and Paul J. Palmer. 2008. A substrateless process for sustainable manufacture of electronic assemblies. In Proceedings of the 2nd Electronics System-Integration Technology Conference (ESTC’08). IEEE, 511--516.Google ScholarGoogle Scholar
  262. Lai Wei, Wei Tian, Elisabete A. Silva, Ruchi Choudhary, QingXin Meng, and Song Yang. 2015. Comparative study on machine learning for urban building energy analysis. In Proceedings of the 9th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC) joint with the 3rd International Conference on Building Energy and Environment (COBEE) DOI:10.1016/j.proeng.2015.08.1070Google ScholarGoogle ScholarCross RefCross Ref
  263. Caitlin E. Werrell and Francesco Femia (Eds.). 2017. Epicenters of climate and security: The new geostrategic landscape of the Anthropocene. Center Clim. Sec. (June 2017). Retrieved from https://climateandsecurity.files.wordpress.com/2017/06/epicenters-of-climate-and-security_the-new-geostrategic-landscape-of-the-anthropocene_2017_06_091.pdf.Google ScholarGoogle Scholar
  264. Jörg Wicker, Kathrin Fenner, and Stefan Kramer. 2016. A hybrid machine learning and knowledge based approach to limit combinatorial explosion in biodegradation prediction. In Computational Sustainability. Studies in Computational Intelligence, Vol. 645. Springer, Cham, 75--97. DOI:10.1007/978-3-319-31858-5_5Google ScholarGoogle Scholar
  265. Thomas Wiedmann and Jan Minx. 2008. A definition of “carbon footprint.” Ecol. Econ. Res. Trends 1 (2008), 1--11.Google ScholarGoogle Scholar
  266. Bryan Wilder, Sze-Chuan Suen, and Milind Tambe. 2018. Preventing infectious disease in dynamic populations under uncertainty. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Retrieved from https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16714/15766.Google ScholarGoogle Scholar
  267. Eric Williams. 2011. Environmental effects of information and communications technologies. Nature 479, 7373 (2011), 354.Google ScholarGoogle Scholar
  268. Björn Wolff, Elke Lorenz, and Oliver Kramer. 2016. Statistical learning for short-term photovoltaic power predictions. In Computational Sustainability. Studies in Computational Intelligence, Vol. 645. Springer, Cham, 31--45. DOI:10.1007/978-3-319-31858-5_3Google ScholarGoogle Scholar
  269. Warren W. Wood and David W. Hyndman. 2017. Groundwater depletion: A significant unreported source of atmospheric carbon dioxide. Earth’s Fut. 5, 11 (Nov. 2017). DOI:https://doi.org/10.1002/2017EF000586Google ScholarGoogle Scholar
  270. Xiaojian Wu, Akshat Kumar, Daniel Sheldon, and Shlomo Zilberstein. 2016. Robust optimization for tree-structured stochastic network design. arXiv:1612.00104 (2016).Google ScholarGoogle Scholar
  271. Zhen Xiao, Weijia Song, and Qi Chen. 2013. Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Trans. Parallel Distrib. Syst. 24, 6 (June 2013), 1107--1117.Google ScholarGoogle ScholarDigital LibraryDigital Library
  272. Michael Xie, Neal Jean, Marshall Burke, David Lobell, and Stefano Ermon. 2016. Transfer learning from deep features for remote sensing and poverty mapping. In Proceedings of the 30th AAAI Conference on Artificial Intelligence arXiv:1510.00098 (2016).Google ScholarGoogle Scholar
  273. Yexiang Xue, Xiaojian Wu, Dana Morin, Bistra Dilkina, Angela Fuller, J. Andrew Royle, and Carla P. Gomes. 2017. Dynamic optimization of landscape connectivity embedding spatial capture--recapture information. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’17). 4552--4558.Google ScholarGoogle Scholar
  274. Peng Yang, Randy A. Freeman, Geoffrey J. Gordon, Kevin M. Lynch, Siddhartha S. Srinivasa, and Rahul Sukthankar. 2010. Decentralized estimation and control of graph connectivity for mobile sensor networks. Automatica 46, 2 (2010), 390--396.Google ScholarGoogle ScholarDigital LibraryDigital Library
  275. Jagadeesh B. Yeluripati, Marcel Van Oijen, Martin Wattenbach, A. Neftel, A. Ammann, W. J. Parton, and Pete Smith. 2009. Bayesian calibration as a tool for initialising the carbon pools of dynamic soil models. Soil Biol. Biochem. 41, 12 (2009), 2579--2583.Google ScholarGoogle ScholarCross RefCross Ref
  276. Norman Yoffee. 1979. The decline and rise of Mesopotamian civilization: An ethnoarchaeological perspective on the evolution of social complexity. Amer. Antiq. 44, 1 (Jan. 1979), 5--35. DOI:https://doi.org/10.2307/279187Google ScholarGoogle ScholarCross RefCross Ref
  277. Jiaxuan You, Xiaocheng Li, Melvin Low, David Lobell, and Stefano Ermon. 2017. Deep Gaussian process for crop yield prediction based on remote sensing data. In Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI’17). Retrieved from https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14435.Google ScholarGoogle Scholar
  278. Ting Yu, Nitesh Chawla, and Simeon Simoff. 2013. Computationally Intelligent Data Analysis for Sustainable Development. CRC Press.Google ScholarGoogle Scholar
  279. Atefe Zakeri, Farzad Dehghanian, Behnam Fahimnia, and Joseph Sarkis. 2015. Carbon pricing versus emissions trading: A supply chain planning perspective. Int. J. Prod. Econ. 164 (2015), 197--205.Google ScholarGoogle ScholarCross RefCross Ref
  280. Qingchen Zhang, Man Lin, Laurence T. Yang, Zhikui Chen, and Peng Li. 2017. Energy-efficient scheduling for real-time systems based on deep Q-learning model. IEEE Trans. Sustain. Comput. 4, 1 (Aug. 2017). DOI:10.1109/TSUSC.2017.2743704Google ScholarGoogle Scholar
  281. F. Liu Zheng and H.-P. Hsieh. 2013. U-air: When urban air quality inference meets big data. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1436--1444.Google ScholarGoogle ScholarDigital LibraryDigital Library
  282. Albert Y. Zomaya and Young Choon Lee (Eds.). 2012. Energy-efficient Distributed Computing Systems. Wiley-IEEE Computer Society.Google ScholarGoogle Scholar

Index Terms

  1. Computational Sustainability: A Socio-technical Perspective

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Computing Surveys
                ACM Computing Surveys  Volume 53, Issue 5
                September 2021
                782 pages
                ISSN:0360-0300
                EISSN:1557-7341
                DOI:10.1145/3426973
                Issue’s Table of Contents

                Copyright © 2020 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 28 September 2020
                • Accepted: 1 June 2020
                • Revised: 1 September 2019
                • Received: 1 August 2018
                Published in csur Volume 53, Issue 5

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • survey
                • Research
                • Refereed

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader

              HTML Format

              View this article in HTML Format .

              View HTML Format