skip to main content
10.1145/3411764.3445499acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Dynamic Field of View Restriction in 360° Video: Aligning Optical Flow and Visual SLAM to Mitigate VIMS

Authors Info & Claims
Published:07 May 2021Publication History

ABSTRACT

Head-Mounted Display based Virtual Reality is proliferating. However, Visually Induced Motion Sickness (VIMS), which prevents many from using VR without discomfort, bars widespread adoption. Prior work has shown that limiting the Field of View (FoV) can reduce VIMS at a cost of also reducing presence. Systems that dynamically adjust a user’s FoV may be able to balance these concerns. To explore this idea, we present a technique for standard 360° video that shrinks FoVs only during VIMS inducing scenes. It uses Visual Simultaneous Localization and Mapping and peripheral optical flow to compute camera movements and reduces FoV during rapid motion or optical flow. A user study (N=23) comparing 360° video with unrestricted-FoVs (90°), reduced fixed-FoVs (40°) and dynamic-FoVs (40°-90°) revealed that dynamic-FoVs mitigate VIMS while maintaining presence. We close by discussing the user experience of dynamic-FoVs and recommendations for how they can help make VR comfortable and immersive for all.

Skip Supplemental Material Section

Supplemental Material

References

  1. 2017. Tunneling Demo | Google VR. https://developers.google.com/vr/elements/tunnelingGoogle ScholarGoogle Scholar
  2. Isayas Berhe Adhanom, Nathan Navarro Griffin, Paul MacNeilage, and Eelke Folmer. 2020. The Effect of a Foveated Field-of-view Restrictor on VR Sickness. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). 645–652. https://doi.org/10.1109/VR46266.2020.00087 ISSN: 2642-5254.Google ScholarGoogle ScholarCross RefCross Ref
  3. Majed Al Zayer, Isayas B. Adhanom, Paul MacNeilage, and Eelke Folmer. 2019. The Effect of Field-of-View Restriction on Sex Bias in VR Sickness and Spatial Navigation Performance. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems(CHI ’19). ACM, New York, NY, USA, 354:1–354:12. https://doi.org/10.1145/3290605.3300584Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Shelly L. Ames, James S. Wolffsohn, and Neville A. Mcbrien. 2005. The Development of a Symptom Questionnaire for Assessing Virtual Reality Viewing Using a Head-Mounted Display:. Optometry and Vision Science 82, 3 (March 2005), 168–176. https://doi.org/10.1097/01.OPX.0000156307.95086.6Google ScholarGoogle ScholarCross RefCross Ref
  5. Samuel Ang and John Quarles. 2020. GingerVR: An Open Source Repository of Cybersickness Reduction Techniques for Unity. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). IEEE, Atlanta, GA, USA, 460–463. https://doi.org/10.1109/VRW50115.2020.00097Google ScholarGoogle ScholarCross RefCross Ref
  6. Simon Baker and Iain Matthews. 2004. Lucas-Kanade 20 Years On: A Unifying Framework. International Journal of Computer Vision 56, 3 (Feb. 2004), 221–255. https://doi.org/10.1023/B:VISI.0000011205.11775.fdGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  7. Paulo Bala, Raul Masu, Valentina Nisi, and Nuno Nunes. 2019. ”When the Elephant Trumps”: A Comparative Study on Spatial Audio for Orientation in 360º Videos. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems - CHI ’19. ACM Press, Glasgow, Scotland Uk, 1–13. https://doi.org/10.1145/3290605.3300925Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Paulo Bala, Ian Oakley, Valentina Nisi, and Nuno Nunes. 2020. Staying on Track: a Comparative Study on the Use of Optical Flow in 360° Video to Mitigate VIMS. In ACM International Conference on Interactive Media Experiences. ACM, Cornella, Barcelona Spain, 82–93. https://doi.org/10.1145/3391614.3393658Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Tarik Benbrahim. 2019. GoPro x RYOT: Tales From the Edge in 4K VR | Jeb Corliss. https://www.youtube.com/watch?v=szHgpgVzfMM&ab_channel=GoProGoogle ScholarGoogle Scholar
  10. María Carolina Bermúdez Rey, Torin K. Clark, Wei Wang, Tania Leeder, Yong Bian, and Daniel M. Merfeld. 2016. Vestibular Perceptual Thresholds Increase above the Age of 40. Frontiers in Neurology 7 (Oct. 2016). https://doi.org/10.3389/fneur.2016.00162Google ScholarGoogle ScholarCross RefCross Ref
  11. A. Berthoz, B. Pavard, and L. R. Young. 1975. Perception of linear horizontal self-motion induced by peripheral vision (linearvection) basic characteristics and visual-vestibular interactions. Experimental Brain Research 23, 5 (Nov. 1975), 471–489.Google ScholarGoogle ScholarCross RefCross Ref
  12. Chris Bevan and David Green. 2018. A Mediography of Virtual Reality Non-Fiction: Insights and Future Directions. In Proceedings of the 2018 ACM International Conference on Interactive Experiences for TV and Online Video - TVX ’18. ACM Press, SEOUL, Republic of Korea, 161–166. https://doi.org/10.1145/3210825.3213557Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Chris Bevan, David Philip Green, Harry Farmer, Mandy Rose, Kirsten Cater, Danaë Stanton Fraser, and Helen Brown. 2019. Behind the Curtain of the ”Ultimate Empathy Machine”: On the Composition of Virtual Reality Nonfiction Experiences. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems - CHI ’19. ACM Press, Glasgow, Scotland Uk, 1–12. https://doi.org/10.1145/3290605.3300736Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jiwan Bhandari, Paul MacNeilage, and Eelke Folmer. 2018. Teleportation without Spatial Disorientation Using Optical Flow Cues. In Proceedings of the 44th Graphics Interface Conference (Toronto, Canada) (GI ’18). Canadian Human-Computer Communications Society, Waterloo, CAN, 162–167. https://doi.org/10.20380/GI2018.22Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Roger Bivand, L. Anselin, O. Berke, A. Bernat, M. Carvalho, Y. Chun, C. F. Dormann, S. Dray, R. Halbersma, and N. Lewin-Koh. 2011. spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.5-31.Google ScholarGoogle Scholar
  16. Roger Bivand, Tim Keitt, Barry Rowlingson, and E. Pebesma. 2014. rgdal: Bindings for the geospatial data abstraction library. R package version 0.8-16(2014).Google ScholarGoogle Scholar
  17. Mark Bolas, J. Adam Jones, Ian McDowall, and Evan Suma. 2017. Dynamic field of view throttling as a means of improving user experience in head mounted virtual environments.Google ScholarGoogle Scholar
  18. Frederick Bonato, Andrea Bubka, Stephen Palmisano, Danielle Phillip, and Giselle Moreno. 2008. Vection Change Exacerbates Simulator Sickness in Virtual Environments. Presence: Teleoperators and Virtual Environments 17, 3 (June 2008), 283–292. https://doi.org/10.1162/pres.17.3.283Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jelte E. Bos, Sjoerd C. de Vries, Martijn L. van Emmerik, and Eric L. Groen. 2010. The effect of internal and external fields of view on visually induced motion sickness. Applied Ergonomics 41, 4 (July 2010), 516–521. https://doi.org/10.1016/j.apergo.2009.11.007Google ScholarGoogle ScholarCross RefCross Ref
  20. G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools(2000).Google ScholarGoogle Scholar
  21. Th. Brandt, Johannes Dichgans, and Ed Koenig. 1973. Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Experimental Brain Research 16, 5 (March 1973), 476–491. https://doi.org/10.1007/BF00234474Google ScholarGoogle ScholarCross RefCross Ref
  22. Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qualitative research in psychology 3, 2 (2006), 77–101.Google ScholarGoogle Scholar
  23. Pulkit Budhiraja, Mark Roman Miller, Abhishek K. Modi, and David Forsyth. 2017. Rotation Blurring: Use of Artificial Blurring to Reduce Cybersickness in Virtual Reality First Person Shooters. arXiv:1710.02599 [cs] (Oct. 2017). http://arxiv.org/abs/1710.02599 arXiv:1710.02599.Google ScholarGoogle Scholar
  24. Helmut Buhler, Sebastian Misztal, and Jonas Schild. 2018. Reducing VR Sickness Through Peripheral Visual Effects. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, Reutlingen, 517–9. https://doi.org/10.1109/VR.2018.8446346Google ScholarGoogle ScholarCross RefCross Ref
  25. Fabio Buttussi and Luca Chittaro. 2019. Locomotion in Place in Virtual Reality: A Comparative Evaluation of Joystick, Teleport, and Leaning. IEEE Transactions on Visualization and Computer Graphics (2019), 1–1. https://doi.org/10.1109/TVCG.2019.2928304Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. van Buuren and Karin Groothuis-Oudshoorn. 2010. mice: Multivariate imputation by chained equations in R. Journal of statistical software(2010), 1–68. Publisher: University of California, Los Angeles.Google ScholarGoogle Scholar
  27. Zekun Cao, Jason Jerald, and Regis Kopper. 2018. Visually-Induced Motion Sickness Reduction via Static and Dynamic Rest Frames. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). 105–112. https://doi.org/10.1109/VR.2018.8446210Google ScholarGoogle ScholarCross RefCross Ref
  28. David Caruso, Jakob Engel, and Daniel Cremers. 2015. Large-scale direct SLAM for omnidirectional cameras. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Hamburg, Germany, 141–148. https://doi.org/10.1109/IROS.2015.7353366Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Eunhee Chang, Hyun Taek Kim, and Byounghyun Yoo. 2020. Virtual Reality Sickness: A Review of Causes and Measurements. International Journal of Human–Computer Interaction (July 2020), 1–25. https://doi.org/10.1080/10447318.2020.1778351Google ScholarGoogle ScholarCross RefCross Ref
  30. Shih-Han Chou, Cheng Sun, Wen-Yen Chang, Wan-Ting Hsu, Min Sun, and Jianlong Fu. 2020. 360-Indoor: Towards Learning Real-World Objects in 360º Indoor Equirectangular Images. In The IEEE Winter Conference on Applications of Computer Vision. 845–853.Google ScholarGoogle ScholarCross RefCross Ref
  31. Rudolph P. Darken, William R. Cockayne, and David Carmein. 1997. The omni-directional treadmill: a locomotion device for virtual worlds. In Proceedings of the 10th annual ACM symposium on User interface software and technology - UIST ’97. ACM Press, Banff, Alberta, Canada, 213–221. https://doi.org/10.1145/263407.263550Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Erwan J. David, Jesús Gutiérrez, Antoine Coutrot, Matthieu Perreira Da Silva, and Patrick Le Callet. 2018. A dataset of head and eye movements for 360° videos. In Proceedings of the 9th ACM Multimedia Systems Conference. ACM, Amsterdam Netherlands, 432–437. https://doi.org/10.1145/3204949.3208139Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Simon Davis, Keith Nesbitt, and Eugene Nalivaiko. 2015. Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters. In Proceedings of the 11th Australasian Conference on Interactive Entertainment (IE 2015), Vol. 27. 30. http://crpit.com/confpapers/CRPITV167Davis.pdfGoogle ScholarGoogle Scholar
  34. M. H. Draper, E. S. Viire, T. A. Furness, and V. J. Gawron. 2001. Effects of image scale and system time delay on simulator sickness within head-coupled virtual environments. Human Factors 43, 1 (2001), 129–146. https://doi.org/10.1518/001872001775992552Google ScholarGoogle ScholarCross RefCross Ref
  35. Henry Been-Lirn Duh, Donald E. Parker, and Thomas A. Furness. 2001. An “Independent Visual Background” Reduced Balance Disturbance Envoked by Visual Scene Motion: Implication for Alleviating Simulator Sickness. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Seattle, Washington, USA) (CHI ’01). Association for Computing Machinery, New York, NY, USA, 85–89. https://doi.org/10.1145/365024.365051Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Henry Been-Lirn Duh, Donald E. Parker, and Thomas A. Furness. 2004. An Independent Visual Background Reduced Simulator Sickness in a Driving Simulator. Presence: Teleoperators and Virtual Environments 13, 5 (Oct. 2004), 578–588. https://doi.org/10.1162/1054746042545283Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Natalia Dużmańska, Paweł Strojny, and Agnieszka Strojny. 2018. Can Simulator Sickness Be Avoided? A Review on Temporal Aspects of Simulator Sickness. Frontiers in Psychology 9 (Nov. 2018). https://doi.org/10.3389/fpsyg.2018.02132Google ScholarGoogle ScholarCross RefCross Ref
  38. Sheldon M. Ebenholtz. 2001. Oculomotor systems and perception. Cambridge University Press, New York.Google ScholarGoogle Scholar
  39. Yasin Farmani and Robert J. Teather. 2018. Viewpoint Snapping to Reduce Cybersickness in Virtual Reality. (2018), 168 – 175. https://doi.org/10.20380/GI2018.23Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Gunnar Farnebäck. 2003. Two-frame motion estimation based on polynomial expansion. Image analysis (2003), 363–370.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ajoy S Fernandes and Steven K. Feiner. 2016. Combating VR sickness through subtle dynamic field-of-view modification. In 2016 IEEE Symposium on 3D User Interfaces (3DUI). IEEE, Greenville, SC, USA, 201–210. https://doi.org/10.1109/3DUI.2016.7460053Google ScholarGoogle ScholarCross RefCross Ref
  42. Andy Field, Jeremy Miles, and Zoë Field. 2012. Discovering statistics using R. Sage publications.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Eivind Flobak, Jo D. Wake, Joakim Vindenes, Smiti Kahlon, Tine Nordgreen, and Frode Guribye. 2019. Participatory Design of VR Scenarios for Exposure Therapy. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems - CHI ’19. ACM Press, Glasgow, Scotland Uk, 1–12. https://doi.org/10.1145/3290605.3300799Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Sebastian Freitag, Benjamin Weyers, and Torsten W. Kuhlen. 2017. Assisted travel based on common visibility and navigation meshes. In 2017 IEEE Virtual Reality (VR). IEEE, 369–370. https://doi.org/10.1109/VR.2017.7892330Google ScholarGoogle ScholarCross RefCross Ref
  45. Jann Philipp Freiwald, Oscar Ariza, Omar Janeh, and Frank Steinicke. 2020. Walking by Cycling: A Novel In-Place Locomotion User Interface for Seated Virtual Reality Experiences. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM, Honolulu HI USA, 1–12. https://doi.org/10.1145/3313831.3376574Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Augusto Garcia-Agundez, Aiko Westmeier, Polona Caserman, Robert Konrad, and Stefan Göbel. 2017. An Evaluation of Extrapolation and Filtering Techniques in Head Tracking for Virtual Environments to Reduce Cybersickness. In Serious Games(Lecture Notes in Computer Science). Springer, Cham, 203–211. https://doi.org/10.1007/978-3-319-70111-0_19Google ScholarGoogle ScholarCross RefCross Ref
  47. John F Golding. 1998. Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Research Bulletin 47, 5 (Nov. 1998), 507–516. https://doi.org/10.1016/S0361-9230(98)00091-4Google ScholarGoogle ScholarCross RefCross Ref
  48. Google. 2020. Google Earth VR. https://arvr.google.com/earth/Google ScholarGoogle Scholar
  49. John W. Graham. 2009. Missing Data Analysis: Making It Work in the Real World. Annual Review of Psychology 60, 1 (Jan. 2009), 549–576. https://doi.org/10.1146/annurev.psych.58.110405.085530Google ScholarGoogle ScholarCross RefCross Ref
  50. Jože Guna, Gregor Geršak, Iztok Humar, Jeungeun Song, Janko Drnovšek, and Matevž Pogačnik. 2019. Influence of video content type on users’ virtual reality sickness perception and physiological response. Future Generation Computer Systems 91 (Feb. 2019), 263–276. https://doi.org/10.1016/j.future.2018.08.049Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Kelly S. Hale and Kay M. Stanney (Eds.). 2014. Handbook of Virtual Environments: Design, Implementation, and Applications, Second Edition(0 ed.). CRC Press. https://doi.org/10.1201/b17360Google ScholarGoogle ScholarCross RefCross Ref
  52. Haikun Huang, Michael Solah, Dingzeyu Li, and Lap-Fai Yu. 2019. Audible Panorama: Automatic Spatial Audio Generation for Panorama Imagery. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems(CHI ’19). ACM, New York, NY, USA, 621:1–621:11. https://doi.org/10.1145/3290605.3300851Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Nupur Kala, Kyungmin Lim, Kwanghyun Won, Jaesung Lee, Tammy Lee, Sehoon Kim, and Wonhee Choe. 2017. P-218: An Approach to Reduce VR Sickness by Content Based Field of View Processing. SID Symposium Digest of Technical Papers 48, 1 (May 2017), 1645–1648. https://doi.org/10.1002/sdtp.11956Google ScholarGoogle ScholarCross RefCross Ref
  54. Shunichi Kasahara, Shohei Nagai, and Jun Rekimoto. 2015. First Person Omnidirectional Video: System Design and Implications for Immersive Experience. In Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video (Brussels, Belgium) (TVX ’15). Association for Computing Machinery, New York, NY, USA, 33–42. https://doi.org/10.1145/2745197.2745202Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Andras Kemeny, Paul George, Frédéric Mérienne, and Florent Colombet. 2017. New VR Navigation Techniques to Reduce Cybersickness. https://doi.org/10.2352/ISSN.2470-1173.2017.3.ERVR-097Google ScholarGoogle ScholarCross RefCross Ref
  56. Robert S. Kennedy, Norman E. Lane, Kevin S. Berbaum, and Michael G. Lilienthal. 1993. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology 3, 3 (July 1993), 203–220. https://doi.org/10.1207/s15327108ijap0303_3Google ScholarGoogle ScholarCross RefCross Ref
  57. Behrang Keshavarz, Heiko Hecht, and Lisa Zschutschke. 2011. Intra-visual conflict in visually induced motion sickness. Displays 32, 4 (Oct. 2011), 181–188. https://doi.org/10.1016/j.displa.2011.05.009Google ScholarGoogle ScholarCross RefCross Ref
  58. Behrang Keshavarz, Aaron Emile Philipp-Muller, Wanja Hemmerich, Bernhard E. Riecke, and Jennifer L. Campos. 2019. The effect of visual motion stimulus characteristics on vection and visually induced motion sickness. Displays 58 (July 2019), 71–81. https://doi.org/10.1016/j.displa.2018.07.005Google ScholarGoogle ScholarCross RefCross Ref
  59. Hyun K. Kim, Jaehyun Park, Yeongcheol Choi, and Mungyeong Choe. 2018. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment. Applied ergonomics 69(2018), 66–73. https://doi.org/10.1016/j.apergo.2017.12.016Google ScholarGoogle ScholarCross RefCross Ref
  60. Young Youn Kim, Eun Nam Kim, Min Jae Park, Kwang Suk Park, Hee Dong Ko, and Hyun Taek Kim. 2008. The Application of Biosignal Feedback for Reducing Cybersickness from Exposure to a Virtual Environment. Presence 17, 1 (Feb. 2008), 1–16. https://doi.org/10.1162/pres.17.1.1Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Udo Kuckartz and Stefan Rädiker. 2019. Analyzing qualitative data with MAXQDA. Springer.Google ScholarGoogle Scholar
  62. Joseph J. LaViola, Jr.2000. A Discussion of Cybersickness in Virtual Environments. SIGCHI Bull. 32, 1 (Jan. 2000), 47–56. https://doi.org/10.1145/333329.333344Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Kyungmin Lim, Jaesung Lee, Kwanghyun Won, Nupur Kala, and Tammy Lee. 2020. A novel method for VR sickness reduction based on dynamic field of view processing. Virtual Reality (July 2020). https://doi.org/10.1007/s10055-020-00457-3Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. James Jeng-Weei Lin, Habib Abi-Rached, Do-Hoe Kim, Donald E. Parker, and Thomas A. Furness. 2002. A “Natural” Independent Visual Background Reduced Simulator Sickness. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 46, 26 (2002), 2124–2128. https://doi.org/10.1177/154193120204602605 arXiv:https://doi.org/10.1177/154193120204602605Google ScholarGoogle ScholarCross RefCross Ref
  65. Yung-Ta Lin, Yi-Chi Liao, Shan-Yuan Teng, Yi-Ju Chung, Liwei Chan, and Bing-Yu Chen. 2017. Outside-In: Visualizing Out-of-Sight Regions-of-Interest in a 360 Video Using Spatial Picture-in-Picture Previews. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology. ACM, 255–265. https://doi.org/10.1145/3126594.3126656Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Sean J. Liu, Maneesh Agrawala, Stephen DiVerdi, and Aaron Hertzmann. 2019. View-Dependent Video Textures for 360° Video. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. ACM, New Orleans LA USA, 249–262. https://doi.org/10.1145/3332165.3347887Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Pietro Lungaro, Rickard Sjoberg, Alfredo Jose Fanghella Valero, Ashutosh Mittal, and Konrad Tollmar. 2018. Gaze-Aware Streaming Solutions for the Next Generation of Mobile VR Experiences. IEEE Transactions on Visualization and Computer Graphics 24, 4 (April 2018), 1535–1544. https://doi.org/10.1109/TVCG.2018.2794119Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Ville Mäkelä, Tuuli Keskinen, John Mäkelä, Pekka Kallioniemi, Jussi Karhu, Kimmo Ronkainen, Alisa Burova, Jaakko Hakulinen, and Markku Turunen. 2019. What Are Others Looking at? Exploring 360° Videos on HMDs with Visual Cues about Other Viewers. In Proceedings of the 2019 ACM International Conference on Interactive Experiences for TV and Online Video (Salford (Manchester), United Kingdom) (TVX ’19). Association for Computing Machinery, New York, NY, USA, 13–24. https://doi.org/10.1145/3317697.3323351Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. John W. Mauchly. 1940. Significance Test for Sphericity of a Normal $n$-Variate Distribution. The Annals of Mathematical Statistics 11, 2 (June 1940), 204–209. https://doi.org/10.1214/aoms/1177731915Google ScholarGoogle ScholarCross RefCross Ref
  70. Mark McGill, Daniel Boland, Roderick Murray-Smith, and Stephen Brewster. 2015. A Dose of Reality: Overcoming Usability Challenges in VR Head-Mounted Displays. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems - CHI ’15. ACM Press, Seoul, Republic of Korea, 2143–2152. https://doi.org/10.1145/2702123.2702382Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Mark McGill, Alexander Ng, and Stephen Brewster. 2017. I Am The Passenger: How Visual Motion Cues Can Influence Sickness For In-Car VR. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems(CHI ’17). ACM, New York, NY, USA, 5655–5668. https://doi.org/10.1145/3025453.3026046Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Doug McIlroy, Ray Brownrigg, Thomas P. Minka, and Roger Bivand. 2014. Mapproj: map projections. R package version (2014), 1–2.Google ScholarGoogle Scholar
  73. Michael Meehan, Sharif Razzaque, Mary C. Whitton, and Frederick P. Brooks. 2003. Effect of latency on presence in stressful virtual environments. In IEEE Virtual Reality, 2003. Proceedings.IEEE, 141–148. https://doi.org/10.1109/VR.2003.1191132Google ScholarGoogle ScholarCross RefCross Ref
  74. Byung-Chan Min, Soon-Cheol Chung, Yoon-Ki Min, and Kazuyoshi Sakamoto. 2004. Psychophysiological evaluation of simulator sickness evoked by a graphic simulator. Applied Ergonomics 35, 6 (2004), 549 – 556. https://doi.org/10.1016/j.apergo.2004.06.002Google ScholarGoogle ScholarCross RefCross Ref
  75. Jason D. Moss and Eric R. Muth. 2011. Characteristics of Head-Mounted Displays and Their Effects on Simulator Sickness. Human Factors: The Journal of the Human Factors and Ergonomics Society 53, 3 (June 2011), 308–319. https://doi.org/10.1177/0018720811405196Google ScholarGoogle ScholarCross RefCross Ref
  76. Justin Munafo, Meg Diedrick, and Thomas A. Stoffregen. 2017. The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Experimental brain research 235, 3 (2017), 889–901. https://doi.org/10.1007/s00221-016-4846-7Google ScholarGoogle ScholarCross RefCross Ref
  77. Richard Musil. 2020. HMD Geometry Database. https://risa2000.github.io/hmdgdb/Google ScholarGoogle Scholar
  78. Mahdi Nabiyouni and Doug A. Bowman. 2016. A Taxonomy for Designing Walking-based Locomotion Techniques for Virtual Reality. In Proceedings of the 2016 ACM Companion on Interactive Surfaces and Spaces(ISS Companion ’16). ACM, New York, NY, USA, 115–121. https://doi.org/10.1145/3009939.3010076Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Afshin Taghavi Nasrabadi, Aliehsan Samiei, Anahita Mahzari, Ryan P. McMahan, Ravi Prakash, Mylène C. Q. Farias, and Marcelo M. Carvalho. 2019. A taxonomy and dataset for 360º videos. In Proceedings of the 10th ACM Multimedia Systems Conference(MMSys ’19). Association for Computing Machinery, New York, NY, USA, 273–278. https://doi.org/10.1145/3304109.3325812Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Luís A. R. Neng and Teresa Chambel. 2010. Get around 360° hypervideo. In Proceedings of the 14th International Academic MindTrek Conference on Envisioning Future Media Environments - MindTrek ’10. ACM Press, Tampere, Finland, 119. https://doi.org/10.1145/1930488.1930512Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Cuong Nguyen, Stephen DiVerdi, Aaron Hertzmann, and Feng Liu. 2017. Vremiere: In-Headset Virtual Reality Video Editing. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems(CHI ’17). ACM, New York, NY, USA, 5428–5438. https://doi.org/10.1145/3025453.3025675Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Thinh Nguyen-Vo, Bernhard E. Riecke, and Wolfgang Stuerzlinger. 2018. Simulated Reference Frame: A Cost-Effective Solution to Improve Spatial Orientation in VR. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, Reutlingen, 415–422. https://doi.org/10.1109/VR.2018.8446383Google ScholarGoogle ScholarCross RefCross Ref
  83. Guangyu Nie, Yue Liu, and Yongtian Wang. 2017. [POSTER]Prevention of Visually Induced Motion Sickness Based on Dynamic Real-Time Content-Aware Non-salient Area Blurring. In 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct). IEEE, Nantes, France, 75–78. https://doi.org/10.1109/ISMAR-Adjunct.2017.35Google ScholarGoogle ScholarCross RefCross Ref
  84. Nahal Norouzi, Gerd Bruder, and Greg Welch. 2018. Assessing vignetting as a means to reduce VR sickness during amplified head rotations. In Proceedings of the 15th ACM Symposium on Applied Perception(SAP ’18). Association for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/3225153.3225162Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Oculus. 2020. Locomotion | Oculus Developers. https://developer.oculus.com/learn/bp-locomotion/Google ScholarGoogle Scholar
  86. Amy Pavel, Björn Hartmann, and Maneesh Agrawala. 2017. Shot Orientation Controls for Interactive Cinematography with 360 Video. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology. ACM, Québec City QC Canada, 289–297. https://doi.org/10.1145/3126594.3126636Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Edzer Pebesma. 2018. Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal 10, 1 (2018), 439–446. https://doi.org/10.32614/RJ-2018-009Google ScholarGoogle ScholarCross RefCross Ref
  88. Yi-Hao Peng, Carolyn Yu, Shi-Hong Liu, Chung-Wei Wang, Paul Taele, Neng-Hao Yu, and Mike Y. Chen. 2020. WalkingVibe: Reducing Virtual Reality Sickness and Improving Realism while Walking in VR using Unobtrusive Head-mounted Vibrotactile Feedback. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems(CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376847Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Thiago M. Porcino, Esteban Clua, Daniela Trevisan, Cristina N. Vasconcelos, and Luis Valente. 2017. Minimizing cyber sickness in head mounted display systems: Design guidelines and applications. In 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH). 1–6. https://doi.org/10.1109/SeGAH.2017.7939283Google ScholarGoogle ScholarCross RefCross Ref
  90. J. D. Prothero, M. H. Draper, T. A. Furness, D. E. Parker, and M. J. Wells. 1999. The use of an independent visual background to reduce simulator side-effects. Aviation, Space, and Environmental Medicine 70, 3 Pt 1 (March 1999), 277–283.Google ScholarGoogle Scholar
  91. R Core Team. 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/Google ScholarGoogle Scholar
  92. Sharif Razzaque, Zachariah Kohn, and Mary C Whitton. 2001. Redirected Walking. Technical Report. University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Lisa Rebenitsch and Charles Owen. 2014. Individual Variation in Susceptibility to Cybersickness. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology(UIST ’14). ACM, New York, NY, USA, 309–317. https://doi.org/10.1145/2642918.2647394Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Lisa Rebenitsch and Charles Owen. 2016. Review on cybersickness in applications and visual displays. Virtual Reality 20, 2 (June 2016), 101–125. https://doi.org/10.1007/s10055-016-0285-9Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Gary E. Riccio and Thomas A. Stoffregen. 1991. An ecological Theory of Motion Sickness and Postural Instability. Ecological Psychology 3, 3 (Sept. 1991), 195–240. https://doi.org/10.1207/s15326969eco0303_2Google ScholarGoogle ScholarCross RefCross Ref
  96. Sylvia Rothe and Heinrich Hußmann. 2018. Spatial statistics for analyzing data in cinematic virtual reality. In Proceedings of the 2018 International Conference on Advanced Visual Interfaces - AVI ’18. ACM Press, Castiglione della Pescaia, Grosseto, Italy, 1–3. https://doi.org/10.1145/3206505.3206561Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Santeri Saarinen, Ville Mäkelä, Pekka Kallioniemi, Jaakko Hakulinen, and Markku Turunen. 2017. Guidelines for Designing Interactive Omnidirectional Video Applications. In 16th IFIP TC 13 International Conference on Human-Computer Interaction — INTERACT 2017 - Volume 10516. Springer-Verlag, Berlin, Heidelberg, 263–272. https://doi.org/10.1007/978-3-319-68059-0_17Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Dimitrios Saredakis, Ancret Szpak, Brandon Birckhead, Hannah A. D. Keage, Albert Rizzo, and Tobias Loetscher. 2020. Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis. Frontiers in Human Neuroscience 14 (March 2020). https://doi.org/10.3389/fnhum.2020.00096Google ScholarGoogle ScholarCross RefCross Ref
  99. Thomas Schubert, Frank Friedmann, and Holger Regenbrecht. 2001. The Experience of Presence: Factor Analytic Insights. Presence: Teleoper. Virtual Environ. 10, 3 (June 2001), 266–281. https://doi.org/10.1162/105474601300343603Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. A.F. Seay, D.M. Krum, L. Hodges, and W. Ribarsky. 2001. Simulator sickness and presence in a high FOV virtual environment. In Proceedings IEEE Virtual Reality 2001. IEEE Comput. Soc, Yokohama, Japan, 299–300. https://doi.org/10.1109/VR.2001.913806Google ScholarGoogle ScholarCross RefCross Ref
  101. Volkan Sevinc and Mehmet Ilker Berkman. 2020. Psychometric evaluation of Simulator Sickness Questionnaire and its variants as a measure of cybersickness in consumer virtual environments. Applied Ergonomics 82 (Jan. 2020), 102958. https://doi.org/10.1016/j.apergo.2019.102958Google ScholarGoogle ScholarCross RefCross Ref
  102. Alia Sheikh, Andy Brown, Zillah Watson, and Michael Evans. 2016. Directing attention in 360-degree video. IET Conference Proceedings(2016). https://doi.org/10.1049/ibc.2016.0029Google ScholarGoogle ScholarCross RefCross Ref
  103. Mel Slater and Maria V. Sanchez-Vives. 2016. Enhancing Our Lives with Immersive Virtual Reality. Frontiers in Robotics and AI 3 (Dec. 2016). https://doi.org/10.3389/frobt.2016.00074Google ScholarGoogle ScholarCross RefCross Ref
  104. VERBI Software. 2019. MAXQDA 2020. maxqda.comGoogle ScholarGoogle Scholar
  105. Kay M. Stanney, D. Susan Lanham, Robert S. Kennedy, and Robert Breaux. 1999. Virtual Environment Exposure Drop-Out Thresholds. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 43, 22 (Sept. 1999), 1223–1227. https://doi.org/10.1177/154193129904302212 Publisher: SAGE Publications Inc.Google ScholarGoogle ScholarCross RefCross Ref
  106. Anthony Steed, Francisco R. Ortega, Adam S. Williams, Ernst Kruijff, Wolfgang Stuerzlinger, Anil Ufuk Batmaz, Andrea Stevenson Won, Evan Suma Rosenberg, Adalberto L. Simeone, and Aleshia Hayes. 2020. Evaluating immersive experiences during Covid-19 and beyond. Interactions 27, 4 (July 2020), 62–67. https://doi.org/10.1145/3406098Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. Shinya Sumikura, Mikiya Shibuya, and Ken Sakurada. 2019. OpenVSLAM: A Versatile Visual SLAM Framework. In Proceedings of the 27th ACM International Conference on Multimedia (Nice, France) (MM ’19). ACM, New York, NY, USA, 2292–2295. https://doi.org/10.1145/3343031.3350539Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. Joel Teixeira and Stephen Palmisano. 2020. Effects of dynamic field-of-view restriction on cybersickness and presence in HMD-based virtual reality. Virtual Reality (Aug. 2020). https://doi.org/10.1007/s10055-020-00466-2Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Sam Tregillus. 2016. VR-Drop: Exploring the Use of Walking-in-Place to Create Immersive VR Games. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems(CHI EA ’16). ACM, New York, NY, USA, 176–179. https://doi.org/10.1145/2851581.2890374Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. M. Treisman. 1977. Motion sickness: an evolutionary hypothesis. Science (New York, N.Y.) 197, 4302 (July 1977), 493–495. https://doi.org/10.1126/science.301659Google ScholarGoogle ScholarCross RefCross Ref
  111. Robert J. van Beers, Anne C. Sittig, and Jan J. Denier van der Gon. 1999. Integration of Proprioceptive and Visual Position-Information: An Experimentally Supported Model. Journal of Neurophysiology 81, 3 (March 1999), 1355–1364. https://doi.org/10.1152/jn.1999.81.3.1355Google ScholarGoogle ScholarCross RefCross Ref
  112. Michael Venturino and Maxwell J. Wells. 1990. Head Movements as a Function of Field-of-View Size on a Helmet-Mounted Display. Proceedings of the Human Factors Society Annual Meeting 34, 19 (Oct. 1990), 1572–1576. https://doi.org/10.1177/154193129003401932Google ScholarGoogle ScholarCross RefCross Ref
  113. Nicholas A. Webb and Michael J. Griffin. 2003. Eye movement, vection, and motion sickness with foveal and peripheral vision. Aviation, space, and environmental medicine 74, 6 (2003), 622–625. Publisher: Aerospace Medical Association.Google ScholarGoogle Scholar
  114. David Matthew Whittinghill, Bradley Ziegler, T Case, and B Moore. 2015. Nasum virtualis: A simple technique for reducing simulator sickness. In Games Developers Conference (GDC). 74.Google ScholarGoogle Scholar
  115. Hadley Wickham. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. http://ggplot2.orgGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  116. Carolin Wienrich, Christine Katharina Weidner, Celina Schatto, David Obremski, and Johann Habakuk Israel. 2018. A Virtual Nose as a Rest-Frame - The Impact on Simulator Sickness and Game Experience. In 2018 10th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games). IEEE, Wurzburg, 1–8. https://doi.org/10.1109/VS-Games.2018.8493408Google ScholarGoogle ScholarCross RefCross Ref
  117. Michael Lee Wilson. 2016. The effect of varying latency in a head-mounted display on task performance and motion sickness. (2016).Google ScholarGoogle Scholar
  118. Robert Xiao and Hrvoje Benko. 2016. Augmenting the Field-of-View of Head-Mounted Displays with Sparse Peripheral Displays. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems - CHI ’16 (Santa Clara, California, USA, 2016) (CHI ’16). ACM Press, New York, NY, USA, 1221–1232. https://doi.org/10.1145/2858036.2858212Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. Khalid Yousif, Alireza Bab-Hadiashar, and Reza Hoseinnezhad. 2015. An Overview to Visual Odometry and Visual SLAM: Applications to Mobile Robotics. Intelligent Industrial Systems 1, 4 (Dec. 2015), 289–311. https://doi.org/10.1007/s40903-015-0032-7Google ScholarGoogle ScholarCross RefCross Ref
  120. Daniel Zielasko, Alexander Meißner, Sebastian Freitag, Benjamin Weyers, and Torsten W. Kuhlen. 2018. Dynamic field of view reduction related to subjective sickness measures in an HMD-based data analysis task. In Proc. of IEEE VR Workshop on Everyday Virtual Reality.Google ScholarGoogle Scholar
  121. Daniel Zielasko, Benjamin Weyers, and Torsten W. Kuhlen. 2019. A Non-Stationary Office Desk Substitution for Desk-Based and HMD-Projected Virtual Reality. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (2019), 1884–1889. https://doi.org/10.1109/VR.2019.8797837Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Dynamic Field of View Restriction in 360° Video: Aligning Optical Flow and Visual SLAM to Mitigate VIMS
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            CHI '21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
            May 2021
            10862 pages
            ISBN:9781450380966
            DOI:10.1145/3411764

            Copyright © 2021 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 7 May 2021

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited

            Acceptance Rates

            Overall Acceptance Rate6,199of26,314submissions,24%

            Upcoming Conference

            CHI '24
            CHI Conference on Human Factors in Computing Systems
            May 11 - 16, 2024
            Honolulu , HI , USA

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format