skip to main content
research-article

A novel discretization and numerical solver for non-fourier diffusion

Published: 27 November 2020 Publication History

Abstract

We introduce the C-F diffusion model [Anderson and Tamma 2006; Xue et al. 2018] to computer graphics for diffusion-driven problems that has several attractive properties: (a) it fundamentally explains diffusion from the perspective of the non-equilibrium statistical mechanical Boltzmann Transport Equation, (b) it allows for a finite propagation speed for diffusion, in contrast to the widely employed Fick's/Fourier's law, and (c) it can capture some of the most characteristic visual aspects of diffusion-driven physics, such as hydrogel swelling, limited diffusive domain for smoke flow, snowflake and dendrite formation, that span from Fourier-type to non-Fourier-type diffusive phenomena. We propose a unified convection-diffusion formulation using this model that treats both the diffusive quantity and its associated flux as the primary unknowns, and that recovers the traditional Fourier-type diffusion as a limiting case. We design a novel semi-implicit discretization for this formulation on staggered MAC grids and a geometric Multigrid-preconditioned Conjugate Gradients solver for efficient numerical solution. To highlight the efficacy of our method, we demonstrate end-to-end examples of elastic porous media simulated with the Material Point Method (MPM), and diffusion-driven Eulerian incompressible fluids.

Supplementary Material

ZIP File (a178-xue.zip)
Supplemental material.
MP4 File (a178-xue.mp4)
MP4 File (3414685.3417863.mp4)
Presentation video

References

[1]
Christianne VDR Anderson and Kumar K Tamma. 2006. Novel heat conduction model for bridging different space and time scales. Physical review letters 96, 18 (2006), 184301.
[2]
John Anderson. 2002. Modern Compressible Flow: With Historical Perspective. McGraw-Hill Education; 3 edition.
[3]
KJ Baumeister and TD Hamill. 1969. Hyperbolic heat-conduction equation---a solution for the semi-infinite body problem. (1969).
[4]
Javier Bonet and Richard D Wood. 1997. Nonlinear continuum mechanics for finite element analysis. Cambridge university press.
[5]
Jose A. Canabal, Miguel A. Otaduy, Byungmoon Kim, and Jose Echevarria. 2020. Simulation of Dendritic Painting. Computer Graphics Forum 39, 2 (2020).
[6]
A. Cangialosi, C. Yoon, J. Liu, Q. Huang, J. Guo, T. D Nguyen, D. H Gracias, and R. Schulman. 2017. DNA sequence-directed shape change of photopatterned hydrogels via high-degree swelling. Science 357, 6356 (2017), 1126--1130.
[7]
Mark Carlson, Peter J Mucha, R Brooks Van Horn III, and Greg Turk. 2002. Melting and flowing. In Symposium on Computer Animation. 167--174.
[8]
Carlo Cattaneo. 1948. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3 (1948), 83--101.
[9]
DS Chandrasekharaiah. 1986. Thermoelasticity with second sound: a review. (1986).
[10]
Gang Chen. 2001. Ballistic-diffusive heat-conduction equations. Physical Review Letters 86, 11 (2001), 2297.
[11]
Hsiao-Yu Chen, Arnav Sastry, Wim M van Rees, and Etienne Vouga. 2018. Physical simulation of environmentally induced thin shell deformation. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--13.
[12]
Nelson S-H Chu and Chiew-Lan Tai. 2005. MoXi: real-time ink dispersion in absorbent paper. ACM Transactions on Graphics (TOG) 24, 3 (2005), 504--511.
[13]
Pascal Clausen, Martin Wicke, Jonathan R Shewchuk, and James F O'brien. 2013. Simulating liquids and solid-liquid interactions with lagrangian meshes. ACM Transactions on Graphics (TOG) 32, 2 (2013), 1--15.
[14]
Cassidy J Curtis, Sean E Anderson, Joshua E Seims, Kurt W Fleischer, and David H Salesin. 1997. Computer-generated watercolor. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. 421--430.
[15]
G. Demange, H. Zapolsky, R. Patte, and M. Brunel. 2017. A phase field model for snow crystal growth in three dimensions. Computational Materials 3, 1 (2017), 1--7.
[16]
Mengyuan Ding, Xuchen Han, Stephanie Wang, Theodore F Gast, and Joseph M Teran. 2019. A thermomechanical material point method for baking and cooking. ACM Transactions on Graphics (TOG) 38, 6 (2019), 192.
[17]
Y. Fei, C. Batty, E. Grinspun, and C. Zheng. 2018. A multi-scale model for simulating liquid-fabric interactions. ACM Transactions on Graphics 37, 4 (2018), 1--16.
[18]
Adolph Fick. 1855. V. On liquid diffusion. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 10, 63 (1855), 30--39.
[19]
Jean-Baptiste Joseph Fourier. 1878. Théorie analytique de la chaleur. Paris 1822. Engl. Übersetzung:"Theory o: Heat Transfer", Cambridge (1878).
[20]
Ming Gao, Andre Pradhana, Xuchen Han, Qi Guo, Grant Kot, Eftychios Sifakis, and Chenfanfu Jiang. 2018a. Animating fluid sediment mixture in particle-laden flows. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--11.
[21]
Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and Chenfanfu Jiang. 2018b. GPU optimization of material point methods. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1--12.
[22]
Christoph Gissler, Andreas Henne, Stefan Band, Andreas Peer, and Matthias Teschner. 2020. An Implicit Compressible SPH Solver for Snow Simulation. ACM Trans. Graph. 39, 4, Article 36 (2020), 16 pages.
[23]
Francis H. Harlow and J. Eddie Welch. 1965. Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. Physics of Fluids 8, 12 (1965), 2182--2189.
[24]
Xiaowei He, Huamin Wang, Fengjun Zhang, Hongan Wang, Guoping Wang, Kun Zhou, and Enhua Wu. 2015. Simulation of fluid mixing with interface control. In Symposium on Computer Animation. 129--135.
[25]
Markus Huber, Simon Pabst, and Wolfgang Straßer. 2011. Wet cloth simulation. In ACM SIGGRAPH 2011 Posters. 1--1.
[26]
K. Iwasaki, H. Uchida, Y. Dobashi, and T. Nishita. 2010. Fast particle-based visual simulation of ice melting. In Computer graphics forum, Vol. 29. 2215--2223.
[27]
Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle. 2016. The material point method for simulating continuum materials. In ACM SIGGRAPH 2016 Courses. 1--52.
[28]
Guang-Shan Jiang and Chi-Wang Shu. 1996. Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys. 126, 1 (1996), 202 -- 228.
[29]
Daniel D Joseph and Luigi Preziosi. 1989. Heat waves. Reviews of Modern Physics 61, 1 (1989), 41.
[30]
N. Kang, J. Park, J. Noh, and S. Y Shin. 2010. A hybrid approach to multiple fluid simulation using volume fractions. In Computer Graphics Forum, Vol. 29. 685--694.
[31]
Theodore Kim, David Adalsteinsson, and Ming C Lin. 2006. Modeling ice dynamics as a thin-film stefan problem. In Symposium on Computer animation. 167--176.
[32]
Theodore Kim, Michael Henson, and Ming C Lin. 2004. A hybrid algorithm for modeling ice formation. In Symposium on Computer Animation. 305--314.
[33]
Theodore Kim and Ming Lin. 2007. Stable advection-reaction-diffusion with arbitrary anisotropy. Computer Animation and Virtual Worlds 18, 4--5 (2007), 329--338.
[34]
Theodore Kim and Ming C Lin. 2003. Visual simulation of ice crystal growth. In Symposium on Computer Animation. Eurographics Association, 86--97.
[35]
Ryo Kobayashi. 1994. A numerical approach to three-dimensional dendritic solidification. Experimental mathematics 3, 1 (1994), 59--81.
[36]
Toon Lenaerts, Bart Adams, and Philip Dutré. 2008. Porous flow in particle-based fluid simulations. ACM Transactions on Graphics (TOG) 27, 3 (2008), 1--8.
[37]
Kenneth G Libbrecht. 2005a. The physics of snow crystals. Reports on progress in physics 68, 4 (2005), 855.
[38]
Kenneth G Libbrecht. 2005b. The physics of snow crystals. Reports on progress in physics 68, 4 (2005), 855.
[39]
Kenneth G Libbrecht. 2019. Snow crystals. arXiv preprint arXiv:1910.06389 (2019).
[40]
W-C Lin. 2014. Coupling hair with smoothed particle hydrodynamics fluids. (2014).
[41]
Wei-Chin Lin. 2015. Boundary handling and porous flow for fluid-hair interactions. Computers & Graphics 52 (2015), 33--42.
[42]
A. McAdams, E. Sifakis, and J. Teran. 2010. A Parallel Multigrid Poisson Solver for Fluids Simulation on Large Grids. In Symposium on Computer Animation. 65--74.
[43]
Michael B Nielsen and Ole Østerby. 2013. A two-continua approach to Eulerian simulation of water spray. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--10.
[44]
Stanley Osher, Ronald Fedkiw, and K Piechor. 2004. Level set methods and dynamic implicit surfaces. Appl. Mech. Rev. 57, 3 (2004), B15--B15.
[45]
Saket Patkar and Parag Chaudhuri. 2013. Wetting of porous solids. IEEE transactions on visualization and computer graphics 19, 9 (2013), 1592--1604.
[46]
B. Ren, J. Huang, M. C Lin, and S-M Hu. 2018. Controllable Dendritic Crystal Simulation Using Orientation Field. In Computer Graphics Forum, Vol. 37. 485--495.
[47]
Bo Ren, Chenfeng Li, Xiao Yan, Ming C Lin, Javier Bonet, and Shi-Min Hu. 2014. Multiple-fluid SPH simulation using a mixture model. ACM TOG 33, 5 (2014), 1--11.
[48]
Witawat Rungjiratananon, Yoshihiro Kanamori, and Tomoyuki Nishita. 2012. Wetting effects in hair simulation. In Computer Graphics Forum, Vol. 31. 1993--2002.
[49]
W. Rungjiratananon, Z. Szego, Y. Kanamori, and T. Nishita. 2008. Real-time animation of sand-water interaction. In Computer Graphics Forum, Vol. 27. 1887--1893.
[50]
A Sellitto, VA Cimmelli, and D Jou. 2020. Nonlinear propagation of coupled first-and second-sound waves in thermoelastic solids. Journal of Elasticity 138, 1 (2020), 93--109.
[51]
Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid: A sparse paged grid structure applied to adaptive smoke simulation. ACM Transactions on Graphics (TOG) 33, 6 (2014), 1--12.
[52]
Jos Stam. 1999. Stable Fluids. In Proc. of ACM SIGGRAPH (SIGGRAPH '99). 121--128.
[53]
Johan Stefan. 1891. Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Annalen der Physik 278, 2 (1891), 269--286.
[54]
A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point method for snow simulation. ACM Transactions on Graphics 32, 4 (2013), 1--10.
[55]
A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for phase-change and varied materials. ACM TOG 33, 4 (2014), 1--11.
[56]
Dan Stora, Pierre-Olivier Agliati, Marie-Paule Cani, Fabrice Neyret, and Jean-Dominique Gascuel. 1999. Animating lava flows.
[57]
Andre Pradhana Tampubolon, Theodore Gast, Gergely Klár, Chuyuan Fu, Joseph Teran, Chenfanfu Jiang, and Ken Museth. 2017. Multi-species simulation of porous sand and water mixtures. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1--11.
[58]
U. Trottenberg, C. W. Oosterlee, and A. Schuller. 2001. Multigrid. Academic Press.
[59]
Da Yu Tzou. 2014. Macro-to microscale heat transfer: the lagging behavior. John Wiley & Sons.
[60]
Kiwon Um, Tae-Yong Kim, Youngdon Kwon, and JungHyun Han. 2013. Porous deformable shell simulation with surface water flow and saturation. Computer Animation and Virtual Worlds 24, 3--4 (2013), 247--254.
[61]
V. R Voller and CR Swaminathan. 1991. ERAL Source-based method for solidification phase change. Numerical Heat Transfer, Part B Fundamentals 19, 2 (1991), 175--189.
[62]
Joshuah Wolper, Yu Fang, Minchen Li, Jiecong Lu, Ming Gao, and Chenfanfu Jiang. 2019. CD-MPM: continuum damage material point methods for dynamic fracture animation. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--15.
[63]
Joel Wretborn, Rickard Armiento, and Ken Museth. 2017. Animation of crack propagation by means of an extended multi-body solver for the material point method. Computers & Graphics 69 (2017), 131--139.
[64]
Tao Xue, Xiaobing Zhang, and Kumar K Tamma. 2018. Generalized heat conduction model in moving media emanating from Boltzmann Transport Equation. International Journal of Heat and Mass Transfer 119 (2018), 148--151.
[65]
X. Yan, Y-T Jiang, C-F Li, R. R Martin, and S-M Hu. 2016. Multiphase SPH simulation for interactive fluids and solids. ACM TOG 35, 4 (2016), 1--11.
[66]
Xiao Yan, C-F Li, X-S Chen, and S-M Hu. 2018. MPM simulation of interacting fluids and solids. In Computer Graphics Forum, Vol. 37. 183--193.
[67]
Tao Yang, Jian Chang, Ming C Lin, Ralph R Martin, Jian J Zhang, and Shi-Min Hu. 2017. A unified particle system framework for multi-phase, multi-material visual simulations. ACM Transactions on Graphics (TOG) 36, 6 (2017), 1--13.
[68]
T. Yang, J. Chang, B. Ren, M. C Lin, J. J Zhang, and S-M Hu. 2015. Fast multiple-fluid simulation using Helmholtz free energy. ACM TOG 34, 6 (2015), 1--11.
[69]
Yonghao Yue, Breannan Smith, Peter Yichen Chen, Maytee Chantharayukhonthorn, Ken Kamrin, and Eitan Grinspun. 2018. Hybrid Grains: adaptive coupling of discrete and continuum simulations of granular media. ACM TOG 37, 6 (2018), 1--19.

Cited By

View all
  • (2025)Thermal contact analysis of cracked through-silicon via structures in integrated circuitsInternational Journal of Heat and Mass Transfer10.1016/j.ijheatmasstransfer.2024.126576239(126576)Online publication date: Apr-2025
  • (2024)A Unified MPM Framework Supporting Phase-field Models and Elastic-viscoplastic Phase TransitionACM Transactions on Graphics10.1145/363804743:2(1-19)Online publication date: 3-Jan-2024
  • (2024)Stabilized state-based peridynamics for elasticity emanating from constrained LagrangianEuropean Journal of Mechanics - A/Solids10.1016/j.euromechsol.2023.105127103(105127)Online publication date: Jan-2024
  • Show More Cited By

Index Terms

  1. A novel discretization and numerical solver for non-fourier diffusion

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 39, Issue 6
    December 2020
    1605 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3414685
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 November 2020
    Published in TOG Volume 39, Issue 6

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. C-F diffusion
    2. MPM
    3. convection-diffusion
    4. fick's law
    5. incompressble flow
    6. multigrid solver
    7. non-fourier

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)45
    • Downloads (Last 6 weeks)6
    Reflects downloads up to 02 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Thermal contact analysis of cracked through-silicon via structures in integrated circuitsInternational Journal of Heat and Mass Transfer10.1016/j.ijheatmasstransfer.2024.126576239(126576)Online publication date: Apr-2025
    • (2024)A Unified MPM Framework Supporting Phase-field Models and Elastic-viscoplastic Phase TransitionACM Transactions on Graphics10.1145/363804743:2(1-19)Online publication date: 3-Jan-2024
    • (2024)Stabilized state-based peridynamics for elasticity emanating from constrained LagrangianEuropean Journal of Mechanics - A/Solids10.1016/j.euromechsol.2023.105127103(105127)Online publication date: Jan-2024
    • (2024)Physics-based fluid simulation in computer graphics: Survey, research trends, and challengesComputational Visual Media10.1007/s41095-023-0368-y10:5(803-858)Online publication date: 27-Apr-2024
    • (2023)A Generalized Constitutive Model for Versatile MPM Simulation and Inverse Learning with Differentiable PhysicsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069256:3(1-20)Online publication date: 24-Aug-2023
    • (2023)A highly efficient semi-implicit two-field modeling for thermal contact problems with non-Fourier effectsInternational Communications in Heat and Mass Transfer10.1016/j.icheatmasstransfer.2023.106924146(106924)Online publication date: Jul-2023
    • (2022) A ‐ULMPM: An Adaptively Updated Lagrangian Material Point Method for Efficient Physics Simulation without Numerical Fracture Computer Graphics Forum10.1111/cgf.1447741:2(325-341)Online publication date: 24-May-2022
    • (2021)WeatherscapesACM Transactions on Graphics10.1145/3478513.348053240:6(1-19)Online publication date: 10-Dec-2021
    • (2021)A unified second-order accurate in time MPM formulation for simulating viscoelastic liquids with phase changeACM Transactions on Graphics10.1145/3450626.345982040:4(1-18)Online publication date: 19-Jul-2021
    • (2021)A Lagrangian Particle‐based Formulation for Coupled Simulation of Fracture and Diffusion in Thin MembranesComputer Graphics Forum10.1111/cgf.1440440:7(97-108)Online publication date: 27-Nov-2021
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media