skip to main content
10.1145/3419604.3419785acmotherconferencesArticle/Chapter ViewAbstractPublication PagessitaConference Proceedingsconference-collections
research-article

Evaluation of Classical Descriptors coupled to Support Vector Machine Classifier for Phosphate ore Screening monitoring

Authors Info & Claims
Published:08 November 2020Publication History

ABSTRACT

Phosphorus is an important and finite resource that is utilized mainly to produce phosphate fertilizers that assist in crop production. From phosphate ore to phosphate a process of beneficiation is required to remove the unnecessary minerals contains in the phosphate ore and to increase the grade concentration of mining product. The screening unit is a very important and critical step in this process. However, during this stage, many dysfunctions and anomalies can occur which impact the yield and quality of the product. Hence, it is essential to be monitored for real-time quality control. The purpose of this work is to automate surveillance and anomaly detection on the screening unit by using artificial vision techniques. Classical and supervised image classification approach has been used based on tree manual descriptors; HOG, SIFT, and LBP combined each with the support vector machine classifier. The evaluation of the three combinations shows that the HOG-SVM combination has the best trade-off between both accuracy and runtime.

References

  1. Steen I., 1998, "Phosphorus availability in the 21st Century: management of a non-renewable resource", Phosphorus and Potassium, 217, 25--31.Google ScholarGoogle Scholar
  2. Cordell D., Drangert J-O., and White S., "The story of phosphorus: Global food security and food for thought", Global Environmental Change, 2009, 19, 292--305.Google ScholarGoogle Scholar
  3. Van Vuuren D. P., Bouwman A. F., and Beusen A. H.W., 2010, "Phosphorus demand for the 1970-2100 period: A scenario analysis of resource depletion", Global Environmental Change, 20, 428--439Google ScholarGoogle ScholarCross RefCross Ref
  4. Stewart W. M., Dibb D. W., Johnston A. E. and Smyth, T. J., 2005, "The Contribution of Commercial Fertilizer Nutrients to Food Production", Agronomy Journal, 97, 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  5. https://onlinelibrary.wiley.com/doi/abs/10.1111/agec.12089Google ScholarGoogle Scholar
  6. Kremer M., 1993, "Population growth and technical change, one million B.C. to 1990", Quarterly Journal of Economics, 108, 681--716.Google ScholarGoogle ScholarCross RefCross Ref
  7. US BoM (Var.) US Bureau of Mines Yearbooks, http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock (05/05/2011).Google ScholarGoogle Scholar
  8. USGS (19995-2009). "United States Geological Survey, Mineral Commodity Summaries", http://minerals.usgs.gov/minerals/pubs/mcs (05/05/2010).Google ScholarGoogle Scholar
  9. USGS (2008). United States Geological Survey, Phosphorus Statistics, in Kelly, T. D. and Matos, G. R. Comps. Historical Statistics for minerals and material commodities in the United States: USGS Survey Data Series 140, http://pubs.usgs.gov/ds/2005/140i (05/05/2010).Google ScholarGoogle Scholar
  10. Kent JA. 2012, "Riegel's handbook of industrial chemistry", Springer Science & Business Media.Google ScholarGoogle Scholar
  11. Rule A, Kirby D, Dahlin D. "Recent advances in benefiiation of western phosphates". Mining Eng. 1978;30:37--40.Google ScholarGoogle Scholar
  12. Van Kauwenbergh SJ. 2010, "World phosphate rock reserves and resources". IFDC Muscle Shoals 1--60.Google ScholarGoogle Scholar
  13. A. J. Niemi, R. Ylinen, et H. Hyötyniemi, 1997,"On characterization of pulp and froth in cells of flotation plant", International Journal of Mineral Processing, vol. 51, no 1, p. 51--65, doi: 10.1016/S0301-7516(97)00042-2.Google ScholarGoogle ScholarCross RefCross Ref
  14. R. Hahne, B. I. Pålsson, et P. O. Samskog, 2003, "Ore characterisation for---and simulation of---primary autogenous grinding", Minerals Engineering, vol. 16, no 1, p. 13--19, doi: 10.1016/S0892-6875(02)00311-4.Google ScholarGoogle ScholarCross RefCross Ref
  15. D. W. Moolman, C. Aldrich, J. S. J. van Deventer, et W. W. Stange, 1995, "The classification of froth structures in a copper flotation plant by means of a neural net", International Journal of Mineral Processing, vol. 43, no 3, p. 193--208, doi: 10.1016/0301-7516(95)00003-V.Google ScholarGoogle ScholarCross RefCross Ref
  16. J. M. Oestreich, W. K. Tolley, et D. A. Rice, 1995, "The development of a color sensor system to measure mineral compositions", Minerals Engineering, vol. 8, no 1, p. 31--39, doi: 10.1016/0892-6875(94)00100-Q.Google ScholarGoogle ScholarCross RefCross Ref
  17. D. W. Moolman, C. Aldrich, G. P. J. Schmitz, et J. S. J. Van Deventer, 1996, "The interrelationship between surface froth characteristics and industrial flotation performance", Minerals Engineering, vol. 9, no 8, p. 837--854, doi: 10.1016/0892-6875(96)00076-3.Google ScholarGoogle ScholarCross RefCross Ref
  18. D. J. McKee, G. P. Chitombo, et S. Morrell, 1995, "The relationship between fragmentation in mining and comminution circuit throughput", Minerals Engineering, vol. 8, no 11, p. 1265--1274, doi: 10.1016/0892-6875(95)00094-7.Google ScholarGoogle ScholarCross RefCross Ref
  19. D. W. Moolman, J. J. Eksteen, C. Aldrich, et J. S. J. van Deventer, 1996, "The significance of flotation froth appearance for machine vision control", International Journal of Mineral Processing, vol. 48, no 3, p. 135--158, doi: 10.1016/S0301-7516(96)00022-1.Google ScholarGoogle ScholarCross RefCross Ref
  20. A. Cipriano et al., 1998 "A real time visual sensor for supervision of flotation cells", Minerals Engineering, vol. 11, no 6, p. 489--499, doi: 10.1016/S0892-6875(98)00031-4.Google ScholarGoogle ScholarCross RefCross Ref
  21. Cocanour J.B., Harbuck D.D., Odekirk S.B., 1994, "Real Time Process Control Using Video Photometry", Annual TMS Meeting, San Francisco, USA.Google ScholarGoogle Scholar
  22. Kaartinen J., Hyötyniemi H., 2005, "Combining Multi-Camera-Data of Flotation Circuit with PCA and PLS", Centenary of Flotation Symposium, Brisbane, Australia, 6-9, pp. 121--125.Google ScholarGoogle Scholar
  23. S. Khan, H. Rahmani, S. A. A. Shah, et M. Bennamoun, 2018, "A Guide to Convolutional Neu-ral Networks for Computer Vision", Synthesis Lectures on Computer Vision, vol. 8, no 1, p. 1--207, doi: 10.2200/S00822ED1V01Y201712COV015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. F. Gad, 2018, "Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed Examples in Python Using TensorFlow and Kivy", Berkeley, CA: Apress, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. H. A. Patel et R. D. Rajput, 2018, "Smart Surveillance System Using Histogram of Oriented Gradients (HOG) Algorithm and Haar Cascade Algorithm", in 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), p. 1--4, doi: 10.1109/ICCUBEA.2018.8697464.Google ScholarGoogle ScholarCross RefCross Ref
  26. T. Ojala, M. Pietikäinen, et D. Harwood, 1996, "A comparative study of texture measures with classification based on featured distributions", Pattern Recognition, vol. 29, no 1, p. 51--59, doi: 10.1016/0031-3203(95)00067-4.Google ScholarGoogle ScholarCross RefCross Ref
  27. N. Dalal et B. Triggs, 2005, "Histograms of Oriented Gradients for Human Detection", in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA, 2005, vol. 1, p. 886--893, doi: 10.1109/CVPR.2005.177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. D. G. Lowe, 2004, "Distinctive Image Features from Scale-Invariant Keypoints", International Journal of Computer Vision, vol. 60, no 2, p. 91--110, doi: 10.1023/B: VISI.0000029664.99615.94. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Evaluation of Classical Descriptors coupled to Support Vector Machine Classifier for Phosphate ore Screening monitoring

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        SITA'20: Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications
        September 2020
        333 pages
        ISBN:9781450377331
        DOI:10.1145/3419604

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 8 November 2020

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited
      • Article Metrics

        • Downloads (Last 12 months)2
        • Downloads (Last 6 weeks)0

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader