skip to main content
10.1145/3426020.3426024acmotherconferencesArticle/Chapter ViewAbstractPublication PagessmaConference Proceedingsconference-collections
research-article

Energy Conservation Techniques for Flying Ad Hoc Networks.

Published:04 November 2021Publication History

ABSTRACT

Owing to the remarkable growth of wireless communication and networking technologies, commercial unmanned aerial vehicles (UAVs) have newly arisen and employed in the significant parts of our sky. Abundant advancement is anticipated in the domain of UAV communication in the upcoming decades. The cooperation between multiple UAVs in the air can logically form a flying ad hoc network (FANET) by transferring information among them. FANETs can be used to achieve numerous missions and provide essential aid to ground networks. Nevertheless, they are opposed to several challenges and complications due to the movement of UAVs, the regular packet losses, and broken links between UAVs. Moreover, FANETs are operated with batteries, and energy consumption is a severe problem in FANETs. Furthermore, various activities of UAVs are responsible for energy consumption. This paper surveys different communication protocols and techniques expected to minimize energy consumption in FANETs and guarantee a high level of communication stability with increased network lifetime. Different energy conservation techniques for FANETs are qualitatively compared with each other. Open issues and research challenges are also discussed.

References

  1. R. A. Nazib and S. Moh. 2020, Routing Protocols for Unmanned Aerial Vehicle-Aided Vehicular Ad Hoc Networks: A Survey. IEEE Access, vol. 8, pp. 77535-77560, DOI: 10.1109/ACCESS.2020.2989790.Google ScholarGoogle ScholarCross RefCross Ref
  2. L. Leung, C. Tsui, Hu, X.S. Hu. 2005. Exploiting dynamic workload variation in low energy preemptive task scheduling. In Proceedings of Design, Automation and Test in Europe, ISBN: 0-7695-2288-2, vol. 1, pp.634-639. DOI: 10.1109/DATE.2005.146 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. F. O. Aron, A. Kurien, Y. Hamam. 2008. Topology Control Algorithm for Effective Power Efficiency and Throughput for Wireless Mesh Networks. In Proc. rd International Conference on Broadband Communications, Information Technology & Biomedical Applications, pp. 89–96. DOI: 10.1109/BROADCOM.2008.18 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. F. O. Aron, T. O. Olwal, A. Kurien, and M. O. Odhiamb. 2008. A distributed topology control algorithm to conserve energy in heterogeneous wireless mesh networks. In Proc. World Acad. Sci. Eng. Technol., vol. 30, pp. 530–536. DOI: 10.1.1.193.5013&rep=rep1&type=pdfGoogle ScholarGoogle Scholar
  5. P. Santi. 2005. Topology control in wireless ad hoc and sensor networks. ACM Comput. Survey. vol. 37, no. 2, pp. 164–194. DOI: 10.1145/1089733.1089736 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. H. Coskun, I. Schieferdecker, Y. Al-Hazmi. 2009. Virtual WLAN: Going beyond Virtual Access Points. Journal of Electronic Communications of the EASST (ECEASST), vol. 17, pp. 1–12. DOI: :10.14279/tuj.eceasst.17.226Google ScholarGoogle Scholar
  7. A. Capone, F. Malandra, and B. Sansò. 2012. Energy savings in wireless mesh networks in a time-variable context. J. Mobile Netw. Appl., vol. 17, no. 2, pp. 298–311. DOI: 10.1007/s11036-011-0339-x Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D. Wetherall. 2008. Reducing network energy consumption via sleeping and rate-adaptation. In Proc. 5th USENIX Symp. Netw. Syst. Des. Implementation (NSDI’08), pp. 323–336. DOI: 10.5555/1387589.1387612 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Dey, H. Sarmah, S. Samantray, D. Divakar, and S. S. Pathak. 2020. Energy efficiency in wireless mesh networks. In Proc. IEEE Int. Conf. Comput.Intell. Comput. Res. (ICCIC’10), pp. 1–4. DOI: 10.1109/ICCIC.2010.5705750Google ScholarGoogle Scholar
  10. W. Ye, J. Heidemann, and D. Estrin. 2004. Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Netw. vol. 12, no. 3, pp. 493–506. DOI: 10.1109/TNET.2004.828953 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. T. van Dam and K. Langendoen. An adaptive energy-efficient MAC protocol for wireless sensor networks. In Proc. 1st Int. Conf. Embedded Netw. Sensor Syst. (SenSys’03), 2003, pp. 171–180. DOI: 10.1145/958491.958512 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. M. Kamruzzaman. 2010. An energy efficient multichannel MAC protocol for cognitive radio ad hoc network Int. J. Commun. Netw. Inf. Secur., vol. 2, no. 2, pp. 112–119. ISSN: 2073-607XGoogle ScholarGoogle Scholar
  13. V. Shankar, A. Natarajan, S. K. S. Gupta and L. Schwiebert. 2001. Energy-efficient protocols for wireless communication in biosensor networks. In Proc. 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2001). San Diego, CA, USA, 2001, pp. D-D, DOI: 10.1109/PIMRC.2001.965503.Google ScholarGoogle Scholar
  14. Q. Fan, J. Fan, J. Li, and X. Wang. 2012. A multi-hop energy-efficient sleeping MAC protocol based on TDMA scheduling for wireless mesh sensor networks. Journal of Networks. vol. 7, no. 9, pp. 1355–1361. DOI: 10.4304/jnw.7.9.1355-1361Google ScholarGoogle ScholarCross RefCross Ref
  15. C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava. 2002. Optimizing sensor networks in the energy-latency-density design space. IEEE Trans. Mobile Comput. vol. 1, no. 1, pp. 70–80. DOI: 10.1109/TMC.2002.1011060. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. X. Yang and N. H. Vaidya. 2004. A wakeup scheme for sensor networks: Achieving balance between energy saving and end-to-end delay. In Proc. 10th IEEE Real-Time Embedded Technol. Appl. Symp. (RTAS’04), pp. 19–26. DOI: 10.1109/RTTAS.2004.1317245 Google ScholarGoogle ScholarCross RefCross Ref
  17. M. Dhanaraj, B. S. Manoj, and C. S. R. Murthy. 2005. A new energy efficient protocol for minimizing multi-hop latency in wireless sensor networks. In Proc. 3rd IEEE Int. Conf. Pervasive Comput. Commun. (PerCom), pp. 117–126. DOI: 10.1109/PERCOM.2005.4 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Singh and C. S. Raghavendra. 1998. PAMAS—Power aware multi-access protocol with signaling for ad hoc networks. ACM SIGCOMM Comput.Commun. Rev., vol. 28, no. 3, pp. 5–26. DOI: 10.1145/293927.293928 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. 2000. Energy-efficient communication protocol for wireless micro sensor networks. In Proc. 33rd Annu. Hawaii Int. Conf. Syst. Sci. (HICSS), vol. 2, 10 pp. DOI: 10.1109/HICSS.2000.926982 Google ScholarGoogle ScholarCross RefCross Ref
  20. H. O. Tan and I. Korpeoglu. 2003. Power efficient data gathering and aggregation in wireless sensor networks. ACM SIGMOD Rec., vol. 32, no. 4, pp. 66–71. DOI: 10.1145/959060.959072 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Sheu, S. Tu, and C. Hsu. 2007. Location-free topology control protocol in wireless ad hoc networks. In Proc. IEEE Wireless Comput. Commun. Netw. Conf., Mar. 2007, pp. 66–71. DOI: 10.1109/WCNC.2007.18 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Y. Al-Hazmi and H. D. Meer. 2011. Virtualization of 802.11 interfaces for wireless mesh networks. In Proc. 8th Int. Conf. Wireless On-Demand Netw. Syst. Serv. (WONS’11), Jan., pp. 44–51. DOI: 10.1109/WONS.2011.5720199Google ScholarGoogle Scholar
  23. J. Chang and L. Tassiulas. 2000. Energy conserving routing in wireless ad-hoc networks. In Proc. 19th Annu. Joint Conf. IEEE Comput. Commun. Soc. (INFOCOM), vol. 1, pp. 22–31. DOI: 10.1109/INFCOM.2000.832170Google ScholarGoogle Scholar
  24. B. Awerbuch, D. Holmer, and H. Rubens. 2004. The pulse protocol: Energy efficient infrastructure access. In Proc. 23rd Annu. Joint Conf. IEEE Comput. Commun. Soc. (INFOCOM’04), vol. 2, pp. 1467–1478. DOI: 10.1109/INFCOM.2004.1357031Google ScholarGoogle Scholar
  25. L. Lin, N. B. Shroff, and R. Srikant. 2005. Asymptotically optimal power-aware routing for multi-hop wireless networks with renewable energy sources. In Proc. 24th Annu. Joint Conf. IEEE Comput. Commun. Soc. (INFOCOM’05), vol. 2, pp. 1262–1272. DOI: 10.1109/INFCOM.2005.1498352Google ScholarGoogle Scholar
  26. K. Woo, C. Yu, D. Lee, H. Y. Youn, and B. Lee. 2001. Non-blocking, localized routing algorithm for balanced energy consumption in mobile ad hoc networks. In Proc. 9th Int. Symp. Model. Anal. Simul. Comput. Telecomm. Syst. (MASCOTS’01), pp. 117–124. DOI: 10.1109/MASCOT.2001.948860 Google ScholarGoogle ScholarCross RefCross Ref
  27. H. Gil, J. Yoo, and J. W. Lee. 2003. An on-demand energy-efficient routing algorithm for wireless ad hoc networks. In Proc. 2nd International Conference on Human-(dot)-Society-(at)-Internet (HIS), vol. 2713. pp. 302–311. DOI: 10.1007/3-540-45036-X_31 Google ScholarGoogle ScholarCross RefCross Ref
  28. C. Bemmoussat, F. Didi, and M. Feham. 2012. Efficient routing protocol to support QoS in wireless mesh network. International Journal of Wireless & Mobile Networks, vol. 4, pp. 89–104. DOI: 10.5121/ijwmn.2012.4507Google ScholarGoogle ScholarCross RefCross Ref
  29. F. Luo, C. Jiang, J. Du, J. Yuan, Y. Ren, S. Yu, and M. Guizani. 2015. A distributed gateway selection algorithm for UAV networks. IEEE Transactions on Emerging Topics in Computing, vol. 3, no. 1, pp. 22–33. DOI: 10.1109/TETC.2014.2382433Google ScholarGoogle ScholarCross RefCross Ref
  30. B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. 2002. Span: An Energy-Efficient Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks. Wireless Networks, vol. 8, pp. 481–494. DOI: 10.1023/A:1016542229220 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Cardei, M. X. Cheng, X. Cheng, and D. Du. 2002. Connected domination in multi-hop ad hoc wireless networks. In Proc. 6th Joint Conf .Comput. Sci. Informat., pp. 1–5. DOI: 10.1016/j.procs.2015.08.372Google ScholarGoogle Scholar
  32. N. Shi and X. Luo. 2012. A novel cluster-based location-aided routing protocol for UAV fleet networks. Int. J. Digit. Content Technol. Appl., vol.6, no. 18, pp. 376–383. DOI: 10.4156/jdcta.vol6.issue18.45Google ScholarGoogle Scholar
  33. D. De, W. Song, S. Tang, and Diane Cook. 2012. EAR: An Energy and Activity-Aware Routing Protocol for Wireless Sensor Networks in Smart Environments. Computer Journal, Volume 55, Issue 12, pp. 1492–1506. DOI: 10.1093/comjnl/bxs039 Google ScholarGoogle ScholarCross RefCross Ref
  34. C. Weng, C. Chen, P. Chen, and K. Chang. 2013. Design of an energy-efficient cross-layer protocol for mobile ad hoc networks. IET Communications, vol. 7, no. 3, pp. 217–228. DOI: 10.1049/iet-com.2011.0543Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. S. Liu, Y. Bai, M. Sha, Q. Deng, and D. Qian. 2008. CLEEP: A Novel Cross-Layer Energy-Efficient Protocol for Wireless Sensor Networks. In Proc. 4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), pp. 1–4. DOI: 10.1109/WiCom.2008.939Google ScholarGoogle Scholar
  36. K. P. Shih, H. Chen, C. Li, and H. Chen. 2008. CLE2aR2: A Cross-Layer Energy-Efficient and Reliable Routing Protocol for Wireless Ad Hoc Networks. In Proc. IEEE Symposium on Computers and Communications (ISCC 2008), 436 –441. DOI: 10.1109/ISCC.2008.4625654Google ScholarGoogle Scholar
  37. S. Poudel and S. Moh. 2020. Energy-efficient and fast MAC protocol in UAV-aided wireless sensor networks for time-critical applications. Sensors,vol. 20, pp. 2635-2658. DOI: 10.3390/s20092635Google ScholarGoogle ScholarCross RefCross Ref
  38. S. Poudel and S. Moh. 2019. Medium access control protocols for unmanned aerial vehicle-aided wireless sensor networks: A survey. IEEE Access, vol. 7, pp. 65728-65744. [DOI: 0.1109/ACCESS.2019.2917948]Google ScholarGoogle ScholarCross RefCross Ref
  39. M. Y. Arafat and S. Moh. 2019. Routing protocols for unmanned aerial vehicle networks: A survey.  IEEE Access, vol. 7, pp. 99694-99720. DOI: 10.1109/ACCESS.2019.2930813Google ScholarGoogle Scholar
  40. M. Y. Arafat and S. Moh. 2019. Comparison of clustering algorithms based on weighted clustering metrics for unmanned aerial vehicle networks. In  Proc. 18th Int. Conf. Electron. Inf. Comm. 22-25, Auckland, New Zealand, (ICEIC), pp. 1-4.Google ScholarGoogle Scholar
  41. M. Y. Arafat and S. Moh. A survey on cluster-based routing protocols for unmanned aerial vehicle networks.  IEEE Access, vol. 7, pp. 498-516. DOI: 10.1109/ACCESS.2018.2885539Google ScholarGoogle Scholar
  42. M. Y. Arafat and S. Moh. 2018. Location-aided delay tolerant routing protocol in UAV networks for post-disaster operation.  IEEE Access, vol. 6, pp. 59891-59906. DOI: 10.1109/ACCESS.2018.2875739Google ScholarGoogle Scholar

Index Terms

  1. Energy Conservation Techniques for Flying Ad Hoc Networks.
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            SMA 2020: The 9th International Conference on Smart Media and Applications
            September 2020
            491 pages
            ISBN:9781450389259
            DOI:10.1145/3426020

            Copyright © 2020 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 4 November 2021

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited
          • Article Metrics

            • Downloads (Last 12 months)16
            • Downloads (Last 6 weeks)1

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format