skip to main content
research-article

α β-Relations and the Actual Meaning of α-Renaming

Published:15 January 2021Publication History
Skip Abstract Section

Abstract

In this work we provide an alternative, and equivalent, formulation of the concept of λ-theory without introducing the notion of substitution and the sets of all, free and bound variables occurring in a term. We call α β-relations our alternative versions of λ-theories. We also clarify the actual role of α-renaming in the lambda calculus: it expresses a property of extensionality for a certain class of terms. To motivate the necessity of α-renaming, we construct an unusual denotational model of the lambda calculus that validates all structural and beta conditions but not α-renaming. The article also has a survey character.

References

  1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. 1991. Explicit substitutions. Journal of Functional Programming 1, 4 (1991), 375--416. DOI:https://doi.org/10.1017/S0956796800000186Google ScholarGoogle ScholarCross RefCross Ref
  2. T. S. Ahmed. 2005. Algebraic logic, where does it stand today?Bulletin of Symbolic Logic 11, 4 (2005), 465--516. DOI:https://doi.org/10.2178/bsl/1130335206Google ScholarGoogle Scholar
  3. P. B. Andrews. 1965. A Transfinite Type Theory with Type Variables. North--Holland. DOI:https://doi.org/10.1016/S0049-237X(08)71167-4Google ScholarGoogle Scholar
  4. P. B. Andrews. 1986. Introduction to Mathematical Logic and Type Theory: To Truth through Proof. Academic Press.Google ScholarGoogle Scholar
  5. H. P. Barendregt. 1971. Some Extensional Term Models for Combinatory Logics and λ--Calculi. Ph.D. Dissertation. University of Utretch. http://hdl.handle.net/2066/27329Revised in 2006.Google ScholarGoogle Scholar
  6. H. P. Barendregt. 1984. The Lambda Calculus. Its Syntax and Semantics. Revised edition. North--Holland. DOI:https://doi.org/10.1016/B978-0-444-87508-2.50006-XGoogle ScholarGoogle Scholar
  7. M. Basaldella. 2019. Lambda Congruences and Extensionality. https://arxiv.org/abs/1903.06775Google ScholarGoogle Scholar
  8. C. Berline. 2000. From computation to foundations via functions and application: The &lambda--calculus and its webbed models. Theoretical Computer Science 249, 1 (2000), 81--161. DOI:https://doi.org/10.1016/S0304-3975(00)00057-8Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. Berline. 2006. Graph models of &lambda--calculus at work, and variations. Mathematical Structures in Computer Science 16, 2 (2006), 185--221. DOI:https://doi.org/10.1017/S0960129506005123Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. C. Berline and K. Grue. 2016. A synthetic axiomatization of map theory. Theoretical Computer Science 614 (2016), 1--62. DOI:https://doi.org/10.1016/j.tcs.2015.11.028Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. W. J. Blok and D. Pigozzi. 1989. Algebraizable Logics. Vol. 77. Memoirs of the American Mathematical Society. DOI:https://doi.org/10.1090/memo/0396Google ScholarGoogle Scholar
  12. F. Cardone and J. R. Hindley. 2009. Lambda--calculus and combinators in the 20th century. In Logic from Russell to Church, D. M. Gabbay and J. Woods (Eds.). Handbook of the History of Logic, Vol. 5. North--Holland, 723--817. DOI:https://doi.org/10.1016/S1874-5857(09)70018-4Google ScholarGoogle Scholar
  13. A. Church. 1932. A set of postulates for the foundation of logic. Annals of Mathematics 33, 2 (1932), 346--366. DOI:https://doi.org/10.2307/1968337Google ScholarGoogle ScholarCross RefCross Ref
  14. A. Church. 1940. A formulation of the simple theory of types. Journal of Symbolic Logic 5, 2 (1940), 56--68. DOI:https://doi.org/10.2307/2266170Google ScholarGoogle ScholarCross RefCross Ref
  15. A. Church. 1941. The Calculi of Lambda Conversion. Princeton University Press. http://www.jstor.org/stable/j.ctt1b9x12dGoogle ScholarGoogle Scholar
  16. N. B. Cocchiarella. 1969. A substitution free axiom set for second order logic. Notre Dame Journal of Formal Logic 10, 1 (1969), 18--30. DOI:https://doi.org/10.1305/ndjfl/1093893584Google ScholarGoogle ScholarCross RefCross Ref
  17. E. Copello, N. Szasz, and Á. Tasistro. 2017. Formal metatheory of the lambda calculus using Stoughton’s substitution. Theoretical Computer Science 685 (2017), 65--82. DOI:https://doi.org/10.1016/j.tcs.2016.08.025Google ScholarGoogle ScholarCross RefCross Ref
  18. T. Coquand. 1986. An Analysis of Girard’s Paradox. Technical Report RR--0531. INRIA. https://hal.inria.fr/inria-00076023Google ScholarGoogle Scholar
  19. R. L. Crole. 2012. Alpha equivalence equalities. Theoretical Computer Science 433 (2012), 1--19. DOI:https://doi.org/10.1016/j.tcs.2012.01.030Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. H. B. Curry. 1929. An analysis of logical substitution. American Journal of Mathematics 51, 3 (1929), 363--384. DOI:https://doi.org/10.2307/2370728Google ScholarGoogle ScholarCross RefCross Ref
  21. H. B. Curry and R. Feys. 1958. Combinatory Logic, Volume I. North--Holland. DOI:https://doi.org/10.1016/S0049-237X(08)72029-9Google ScholarGoogle Scholar
  22. H. B. Curry, J. R. Hindley, and J. P. Seldin. 1972. Combinatory Logic, Volume II. North--Holland. DOI:https://doi.org/10.1016/S0049-237X(09)70633-0Google ScholarGoogle Scholar
  23. N. G. de Bruijn. 1972. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church--Rosser theorem. Indagationes Mathematicae 75, 5 (1972), 381--392. DOI:https://doi.org/10.1016/1385-7258(72)90034-0Google ScholarGoogle ScholarCross RefCross Ref
  24. Z. Diskin and I. Beylin. 1993. Lambda substitution algebras. In Proceedings of Mathematical Foundations of Computer Science 1993 (Lecture Notes in Computer Science), A. M. Borzyszkowski and S. Sokołowski (Eds.), Vol. 711. 423--432. DOI:https://doi.org/10.1007/3-540-57182-5_34Google ScholarGoogle Scholar
  25. E. Engeler. 1981. Algebras and combinators. Algebra Universalis 13, 1 (1981), 389--392. DOI:https://doi.org/10.1007/BF02483849Google ScholarGoogle ScholarCross RefCross Ref
  26. M. J. Gabbay and A. M. Pitts. 2002. A new approach to abstract syntax with variable binding. Formal Aspects of Computing 13, 3 (2002), 341--363. DOI:https://doi.org/10.1007/s001650200016Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. Halmos. 1962. Algebraic Logic. Chelsea Publishing.Google ScholarGoogle Scholar
  28. C. Hankin. 1994. Lambda Calculi. A Guide for Computer Scientists. Clarendon Press.Google ScholarGoogle Scholar
  29. L. Henkin. 1963. A theory of propositional types. Fundamenta Mathematicae 52, 3 (1963), 323--344. http://matwbn.icm.edu.pl/ksiazki/fm/fm52/fm52123.pdf.Google ScholarGoogle ScholarCross RefCross Ref
  30. L. Henkin, J. D. Monk, and A. Tarski. 1971. Cylindric Algebras, Part I. North--Holland.Google ScholarGoogle Scholar
  31. L. Henkin, J. D. Monk, and A. Tarski. 1985. Cylindric Algebras, Part II. North--Holland. DOI:https://doi.org/10.1016/S0049-237X(08)70004-1Google ScholarGoogle Scholar
  32. J. R. Hindley. 1964. The Church--Rosser Property and a Result in Combinatory Logic. Ph.D. Dissertation. University of Newcastle upon Tyne.Google ScholarGoogle Scholar
  33. J. R. Hindley and J. P. Seldin. 2008. Lambda--Calculus and Combinators, an Introduction (2nd ed.). Cambridge University Press. DOI:https://doi.org/10.1017/CBO9780511809835Google ScholarGoogle Scholar
  34. T. Hosoi and H. Ono. 1973. Intermediate propositional logics (a survey). Journal of Tsuda College 5 (1973), 67--82. https://www.researchgate.net/publication/285521307_Intermediate_propositional_logics_a_surveyGoogle ScholarGoogle Scholar
  35. B. Intrigila and R. Statman. 2005. Some results on extensionality in lambda calculus. Annals of Pure and Applied Logic 132, 2 (2005), 109--125. DOI:https://doi.org/10.1016/j.apal.2003.05.001Google ScholarGoogle ScholarCross RefCross Ref
  36. D. Kalish and R. Montague. 1965. On Tarski’s formalization of predicate logic with identity. Archiv für mathematische Logik und Grundlagenforschung 7, 3 (May 1965), 81--101. DOI:https://doi.org/10.1007/BF01969434Google ScholarGoogle Scholar
  37. D. Kesner. 2007. The theory of calculi with explicit substitutions revisited. In Proceedings of Computer Science Logic 2007 (Lecture Notes in Computer Science), J. Duparc and T. A. Henzinger (Eds.), Vol. 4646. 238--252. DOI:https://doi.org/10.1007/978-3-540-74915-8_20Google ScholarGoogle ScholarCross RefCross Ref
  38. J.-L. Krivine. 1993. Lambda--Calculus, Types and Models. Ellis Horwood and Prentice--Hall.Google ScholarGoogle Scholar
  39. G. Longo. 1983. Set--theoretical models of &lambda--calculus: Theories, expansions, isomorphisms. Annals of Pure and Applied Logic 24, 2 (1983), 153--188. DOI:https://doi.org/10.1016/0168-0072(83)90030-1Google ScholarGoogle ScholarCross RefCross Ref
  40. S. Lusin and A. Salibra. 2004. The lattice of lambda theories. Journal of Logic and Computation 14, 3 (2004), 373--394. DOI:https://doi.org/10.1093/logcom/14.3.373Google ScholarGoogle ScholarCross RefCross Ref
  41. G. Manzonetto and A. Salibra. 2010. Applying universal algebra to lambda calculus. Journal of Logic and Computation 20, 4 (2010), 877--915. DOI:https://doi.org/10.1093/logcom/exn085Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. A. R. Meyer. 1982. What is a model of the lambda calculus?Information and Control 52, 1 (1982), 87--122. DOI:https://doi.org/10.1016/S0019-9958(82)80087-9Google ScholarGoogle Scholar
  43. D. Monk. 1965. Substitutionless predicate logic with identity. Archiv für mathematische Logik und Grundlagenforschung 7, 3 (1965), 102--121. DOI:https://doi.org/10.1007/BF01969435Google ScholarGoogle Scholar
  44. J. Myhill and B. Flagg. 1989. A type--free system extending (ZFC). Annals of Pure and Applied Logic 43, 1 (1989), 79--97. DOI:https://doi.org/10.1016/0168-0072(89)90026-2Google ScholarGoogle ScholarCross RefCross Ref
  45. I. Németi. 1991. Algebraization of quantifier logics, an introductory overview. Studia Logica 50, 3/4 (1991), 485--569. DOI:https://doi.org/10.1007/BF00370684Google ScholarGoogle ScholarCross RefCross Ref
  46. D. Pigozzi and A. Salibra. 1993. An introduction to lambda abstraction algebras. In Proceedings of IX Latin American Symposium on Mathematical Logic (Part I) (Notas de Lógica Matemática), M. Abad (Ed.), Vol. 38. 93--112. http://inmabb.conicet.gob.ar/static/publicaciones/nlm/nlm-38.pdfGoogle ScholarGoogle Scholar
  47. D. Pigozzi and A. Salibra. 1995. Lambda abstraction algebras: Representation theorems. Theoretical Computer Science 140, 1 (1995), 5--52. DOI:https://doi.org/10.1016/0304-3975(94)00203-UGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  48. D. Pigozzi and A. Salibra. 1995. The abstract variable--binding calculus. Studia Logica 55, 1 (1995), 129--179. DOI:https://doi.org/10.1007/BF01053036Google ScholarGoogle ScholarCross RefCross Ref
  49. D. Pigozzi and A. Salibra. 1998. Lambda abstraction algebras: Coordinatizing models of lambda calculus. Fundamenta Informaticae 33, 2 (1998), 149--200. DOI:https://doi.org/10.3233/FI-1998-33203Google ScholarGoogle ScholarCross RefCross Ref
  50. A. M. Pitts. 2003. Nominal logic, a first order theory of names and binding. Information and Computation 186, 2 (2003), 165--193. DOI:https://doi.org/10.1016/S0890-5401(03)00138-XGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  51. G. D. Plotkin. 1974. The &lambda--calculus is ω--incomplete. Journal of Symbolic Logic 39, 2 (1974), 313--317. DOI:https://doi.org/10.2307/2272645Google ScholarGoogle ScholarCross RefCross Ref
  52. G. D. Plotkin. 1993. Set--theoretical and other elementary models of the &lambda--calculus. Theoretical Computer Science 121, 1 (1993), 351--409. DOI:https://doi.org/10.1016/0304-3975(93)90094-AGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  53. G. E. Révész. 1980. Lambda--calculus without substitution. Bulletin of the European Association for Theoretical Computer Science 11 (1980), 140.Google ScholarGoogle Scholar
  54. G. E. Révész. 1985. Axioms for the theory of lambda--conversion. SIAM Journal on Computing 14, 2 (1985), 373--382. DOI:https://doi.org/10.1137/0214028Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. G. E. Révész. 1988. Lambda--Calculus, Combinators, and Functional Programming. Cambridge University Press.Google ScholarGoogle Scholar
  56. G. E. Révész. 1992. A list--oriented extension of the lambda-calculus satisfying the Church--Rosser theorem. Theoretical Computer Science 93, 1 (1992), 75--89. DOI:https://doi.org/10.1016/0304-3975(92)90212-XGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  57. P. C. Rosenbloom. 1950. The Elements of Mathematical Logic. Dover Publications. Reprinted in 2005.Google ScholarGoogle Scholar
  58. A. Salibra. 1988. A general theory of algebras with quantifiers. In Algebraic Logic (Proceedings of a Conference held in Budapest 1988) (Colloquia Mathematica Societatis János Bolyai), H. Andréka, J. D. Monk, and I. Németi (Eds.), Vol. 54. 573--620.Google ScholarGoogle Scholar
  59. A. Salibra. 2000. On the algebraic models of lambda calculus. Theoretical Computer Science 249, 1 (2000), 197--240. DOI:https://doi.org/10.1016/S0304-3975(00)00059-1Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. A. Salibra and R. Goldblatt. 1999. A finite equational axiomatization of the functional algebras for the lambda calculus. Information and Computation 148, 1 (1999), 71--130. DOI:https://doi.org/10.1006/inco.1998.2745Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. M. Sato and R. Pollack. 2010. External and internal syntax of the &lambda--calculus. Journal of Symbolic Computation 45, 5 (2010), 598--616. DOI:https://doi.org/10.1016/j.jsc.2010.01.010Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. J. P. Seldin. 2009. The logic of Church and Curry. In Logic from Russell to Church, D. M. Gabbay and J. Woods (Eds.). Handbook of the History of Logic, Vol. 5. North--Holland, 819--873. DOI:https://doi.org/10.1016/S1874-5857(09)70019-6Google ScholarGoogle Scholar
  63. P. Selinger. 2003. Order--incompleteness and finite lambda reduction models. Theoretical Computer Science 309, 1 (2003), 43--63. DOI:https://doi.org/10.1016/S0304-3975(02)00038-5Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. P. Selinger. 2013. Lecture Notes on the Lambda Calculus. https://arxiv.org/abs/0804.3434.Google ScholarGoogle Scholar
  65. M. Shönfinkel. 1967. On the building blocks of mathematical logic. In From Frege to Gödel. A Source Book in Mathematical Logic, 1879--1931, J. van Heijenoort (Ed.). Harvard University Press, 355--366.Google ScholarGoogle Scholar
  66. M. H. Sørensen and P. Urzyczyn. 2006. Lectures on the Curry--Howard Isomorphism. Elsevier. DOI:https://doi.org/10.1016/S0049-237X(06)80001-7Google ScholarGoogle Scholar
  67. S. Stenlund. 1972. Combinators, λ--Terms and Proof Theory. Reidel Publishing Company.Google ScholarGoogle Scholar
  68. A. Stoughton. 1988. Substitution revisited. Theoretical Computer Science 59, 3 (1988), 317--325. DOI:https://doi.org/10.1016/0304-3975(88)90149-1Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. J. E. Stoy. 1977. Denotational Semantics: The Scott--Strachey Approach to Programming Language Theory. MIT Press.Google ScholarGoogle Scholar
  70. A. Tarski. 1965. A simplified formalization of predicate logic with identity. Archiv für mathematische Logik und Grundlagenforschung 7, 1 (1965), 61--79. DOI:https://doi.org/10.1007/BF01972461Google ScholarGoogle Scholar
  71. C. Urban, S. Berghofer, and M. Norrish. 2007. Barendregt’s variable convention in rule inductions. In Proceedings of Automated Deduction -- CADE-21 (Lecture Notes in Computer Science), F. Pfenning (Ed.), Vol. 4603. 35--50. DOI:https://doi.org/10.1007/978-3-540-73595-3_4Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. R. Vestergaard. 2003. The Primitive Proof Theory of the &lambda--Calculus. Ph.D. Dissertation. Heriot--Watt University. http://hdl.handle.net/10399/415Google ScholarGoogle Scholar
  73. J. von Neumann. 1967. An axiomatization of set theory. In From Frege to Gödel. A Source Book in Mathematical Logic, 1879--1931, J. van Heijenoort (Ed.). Harvard University Press, 393--413.Google ScholarGoogle Scholar
  74. C. P. Wadsworth. 1976. The relation between computational and denotational properties for Scott’s D&infin--models of the lambda--calculus. SIAM Journal on Computing 5, 3 (1976), 488--521. DOI:https://doi.org/10.1137/0205036Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. P. H. Welch. 1974. The Minimal Continuous Semantics of the Lambda--Calculus. Ph.D. Dissertation. University of Warwick. http://wrap.warwick.ac.uk/72113/.Google ScholarGoogle Scholar

Index Terms

  1. α β-Relations and the Actual Meaning of α-Renaming

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Computational Logic
          ACM Transactions on Computational Logic  Volume 22, Issue 1
          January 2021
          262 pages
          ISSN:1529-3785
          EISSN:1557-945X
          DOI:10.1145/3436816
          • Editor:
          • Orna Kupferman
          Issue’s Table of Contents

          Copyright © 2021 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 15 January 2021
          • Accepted: 1 September 2020
          • Revised: 1 May 2020
          • Received: 1 June 2019
          Published in tocl Volume 22, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed
        • Article Metrics

          • Downloads (Last 12 months)10
          • Downloads (Last 6 weeks)1

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format