skip to main content
research-article

Privacy-preserving Federated Deep Learning for Wearable IoT-based Biomedical Monitoring

Published:05 January 2021Publication History
Skip Abstract Section

Abstract

IoT devices generate massive amounts of biomedical data with increased digitalization and development of the state-of-the-art automated clinical data collection systems. When combined with advanced machine learning algorithms, the big data could be useful to improve the health systems for decision-making, diagnosis, and treatment. Mental healthcare is also attracting attention, since most medical problems can be associated with mental states. Affective computing is among the emerging biomedical informatics fields for automatically monitoring a person’s mental state in ambulatory environments by using physiological and physical signals. However, although affective computing applications are promising to improve our daily lives, before analyzing physiological signals, privacy issues and concerns need to be dealt with. Federated learning is a promising candidate for developing high-performance models while preserving the privacy of individuals. It is a privacy protection solution that stores model parameters instead of the data itself and abides by the data protection laws such as EU General Data Protection Regulation (GDPR) and California Consumer Privacy Act (CCPA). We applied federated learning to heart activity data collected with smart bands for stress-level monitoring in different events. We achieved encouraging results for using federated learning in IoT-based wearable biomedical monitoring systems by preserving the privacy of the data.

References

  1. Sabyasachi Dash, Sushil Kumar Shakyawar, Mohit Sharma, and Sandeep Kaushik. 2019. Big data in healthcare: Management, analysis and future prospects. J. Big Data 6, 1 (2019), 54.Google ScholarGoogle ScholarCross RefCross Ref
  2. Jie Xu and Fei Wang. 2019. Federated learning for healthcare informatics. arXiv preprint arXiv:1911.06270 (2019).Google ScholarGoogle Scholar
  3. S. Greene, H. Thapliyal, and A. Caban-Holt. 2016. A survey of affective computing for stress detection: Evaluating technologies in stress detection for better health. IEEE Cons. Electron. Mag. 5, 4 (Oct. 2016), 44--56. DOI:http://dx.doi.org/10.1109/MCE.2016.2590178Google ScholarGoogle ScholarCross RefCross Ref
  4. Leandro Y. Mano, Bruno S. Faiçal, Luis H. V. Nakamura, Pedro H. Gomes, Giampaolo L. Libralon, Rodolfo I. Meneguete, Geraldo P. R. Filho, Gabriel T. Giancristofaro, Gustavo Pessin, Bhaskar Krishnamachari, and J. Ueyama. 2016. Exploiting IoT technologies for enhancing Health Smart Homes through patient identification and emotion recognition. Comput. Commun. 89--90 (2016), 178--190.Google ScholarGoogle Scholar
  5. Yekta Said Can, Bert Arnrich, and Cem Ersoy. 2019. Stress detection in daily life scenarios using smart phones and wearable sensors: A survey. J. Biomed. Inf. 92 (2019), 103139.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ashima Anand and Amit Kumar Singh. 2020. An improved DWT-SVD domain watermarking for medical information security. Comput. Commun. 152 (2020), 72--80.Google ScholarGoogle ScholarCross RefCross Ref
  7. Wikipedia. 2019. Information privacy law. Retrieved from: https://en.wikipedia.org/wiki/Information_privacy_law.Google ScholarGoogle Scholar
  8. George J. Annas et al. 2003. HIPAA regulations—A new era of medical-record privacy? New Eng. J. Med. 348, 15 (2003), 1486--1490.Google ScholarGoogle ScholarCross RefCross Ref
  9. Paul Voigt and Axel Von dem Bussche. 2017. The EU General Data Protection Regulation (GDPR). A Practical Guide, 1st ed. Springer International Publishing, Cham.Google ScholarGoogle Scholar
  10. Lydia de la Torre. 2018. A guide to the California Consumer Privacy Act of 2018. Retrieved from SSRN 3275571 (2018).Google ScholarGoogle Scholar
  11. Jack Wagner. 2017. China’s Cybersecurity Law: What you need to know. The Diplomat 1 (2017).Google ScholarGoogle Scholar
  12. Cong Peng, He Debiao, Chen Jianhua, Neeraj Kumar, and Muhammad Khurram Khan. 2020. EPRT: An efficient privacy-preserving medical service recommendation and trust discovery scheme. ACM Trans. Internet Technol. 0, ja (2020), 1. DOI:http://dx.doi.org/10.1145/3397678Google ScholarGoogle Scholar
  13. Jakub Konečnỳ, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).Google ScholarGoogle Scholar
  14. Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. 2018. Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604 (2018).Google ScholarGoogle Scholar
  15. B. Liu, L. Wang, and M. Liu. 2019. Lifelong federated reinforcement learning: A learning architecture for navigation in cloud robotic systems. IEEE Robot. Autom. Lett. 4, 4 (Oct. 2019), 4555--4562. DOI:http://dx.doi.org/10.1109/LRA.2019.2931179Google ScholarGoogle ScholarCross RefCross Ref
  16. X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen. 2019. In-Edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Netw. 33, 5 (Sep. 2019), 156--165. DOI:http://dx.doi.org/10.1109/MNET.2019.1800286Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beaufays. 2019. Federated learning for emoji prediction in a mobile keyboard. arXiv preprint arXiv:1906.04329 (2019).Google ScholarGoogle Scholar
  18. D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and J. Dureau. 2019. Federated learning for keyword spotting. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’19). 6341--6345. DOI:http://dx.doi.org/10.1109/ICASSP.2019.8683546Google ScholarGoogle Scholar
  19. S. Samarakoon, M. Bennis, W. Saad, and M. Debbah. 2020. Distributed federated learning for ultra-reliable low-latency vehicular communications. IEEE Trans. Commun. 68, 2 (2020), 1146--1159. DOI:http://dx.doi.org/10.1109/TCOMM.2019.2956472Google ScholarGoogle ScholarCross RefCross Ref
  20. Theodora S. Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky, Ioannis Ch. Paschalidis, and Wei Shi. 2018. Federated learning of predictive models from federated Electronic Health Records. Int. J. Med. Inf. 112 (2018), 59--67.Google ScholarGoogle ScholarCross RefCross Ref
  21. H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera Arcas. 2017. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research), Vol. 54. PMLR, Fort Lauderdale, FL, 1273--1282.Google ScholarGoogle Scholar
  22. Y. S. Can, N. Chalabianloo, D. Ekiz, J. Fernández-Álvarez, C. Repetto, G. Riva, H. Iles-Smith, and C. Ersoy. 2020. Real-life stress-level monitoring using smart bands in the light of contextual information. IEEE Sens. J. 20, 15 (2020), 8721--8730.Google ScholarGoogle ScholarCross RefCross Ref
  23. Giulia Regalia, Francesco Onorati, Matteo Lai, Chiara Caborni, and Rosalind W. Picard. 2019. Multimodal wrist-worn devices for seizure detection and advancing research: Focus on the Empatica wristbands. Epilep. Res. 153 (2019), 79--82.Google ScholarGoogle ScholarCross RefCross Ref
  24. E. H. Nirjhar, A. Behzadan, and T. Chaspari. 2020. Exploring bio-behavioral signal trajectories of state anxiety during public speaking. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’20). 1294--1298.Google ScholarGoogle Scholar
  25. Bahareh Nakisa. 2019. Emotion Classification Using Advanced Machine Learning Techniques Applied to Wearable Physiological Signals Data. Ph.D. Dissertation. Queensland University of Technology.Google ScholarGoogle Scholar
  26. Gregory A. Peters, Matthew L. Wong, and Leon D. Sanchez. 2020. Pedometer-measured physical activity among emergency physicians during shifts. Amer. J. Emerg. Med. 38, 1 (2020), 118--121.Google ScholarGoogle ScholarCross RefCross Ref
  27. Casey A. Cole, Dien Anshari, Victoria Lambert, James F. Thrasher, and Homayoun Valafar. 2017. Detecting smoking events using accelerometer data collected via smartwatch technology: Validation study. JMIR Mhealth Uhealth 5, 12 (13 Dec. 2017), e189.Google ScholarGoogle ScholarCross RefCross Ref
  28. Iván García-Magariño, Carlos Medrano, Inmaculada Plaza, and Bárbara Oliván. 2016. A smartphone-based system for detecting hand tremors in unconstrained environments. Person. Ubiq. Comput. 20, 6 (2016), 959--971.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Hangsik Shin and Jaegeol Cho. 2014. Unconstrained snoring detection using a smartphone during ordinary sleep. Biomed. Eng. Online 13, 1 (2014), 116.Google ScholarGoogle ScholarCross RefCross Ref
  30. Upender Kalwa, Christopher Legner, Taejoon Kong, and Santosh Pandey. 2019. Skin cancer diagnostics with an all-inclusive smartphone application. Symmetry 11, 6 (2019), 790.Google ScholarGoogle ScholarCross RefCross Ref
  31. Youngjun Cho, Simon J. Julier, and Nadia Bianchi-Berthouze. 2019. Instant stress: Detection of perceived mental stress through smartphone photoplethysmography and thermal imaging. JMIR Ment. Health 6, 4 (9 Apr. 2019), e10140.Google ScholarGoogle Scholar
  32. J. He, K. Li, X. Liao, P. Zhang, and N. Jiang. 2019. Real-time detection of acute cognitive stress using a convolutional neural network from electrocardiographic signal. IEEE Access 7 (2019), 42710--42717.Google ScholarGoogle ScholarCross RefCross Ref
  33. Francisco de Arriba-Pérez, Juan M. Santos-Gago, Manuel Caeiro-Rodríguez, and Mateo Ramos-Merino. 2019. Study of stress detection and proposal of stress-related features using commercial-off-the-shelf wrist wearables. J. Amb. Intell. Hum. Comput. 10, 12 (2019), 4925--4945.Google ScholarGoogle ScholarCross RefCross Ref
  34. Elena Vildjiounaite, Johanna Kallio, Vesa Kyllönen, Mikko Nieminen, Ilmari Määttänen, Mikko Lindholm, Jani Mäntyjärvi, and Georgy Gimel’farb. 2018. Unobtrusive stress detection on the basis of smartphone usage data. Person. Ubiq. Comput. 22, 4 (2018), 671--688.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Yekta Said Can, Niaz Chalabianloo, Deniz Ekiz, and Cem Ersoy. 2019. Continuous stress detection using wearable sensors in real life: Algorithmic programming contest case study. Sensors 19, 8 (2019).Google ScholarGoogle Scholar
  36. Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao. 2020. FedHealth: A federated transfer learning framework for wearable healthcare. IEEE Intell. Syst. 35, 4 (2020), 83--93.Google ScholarGoogle ScholarCross RefCross Ref
  37. Yekta Said Can, Niaz Chalabianloo, Deniz Ekiz, and Cem Ersoy. 2019. Continuous stress detection using wearable sensors in real life: Algorithmic programming contest case study. Sensors 19, 8 (2019). DOI:http://dx.doi.org/10.3390/s19081849Google ScholarGoogle Scholar
  38. R. W. Picard. 2016. Automating the recognition of stress and emotion: From lab to real-world impact. IEEE MultiMedia 23, 3 (July 2016), 3--7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Martin Gjoreski, Mitja Luštrek, Matjaž Gams, and Hristijan Gjoreski. 2017. Monitoring stress with a wrist device using context. J. Biomed. Inf. 73 (2017), 159--170.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Mika P. Tarvainen, Juha-Pekka Niskanen, Jukka A. Lipponen, Perttu O. Ranta-Aho, and Pasi A. Karjalainen. 2014. Kubios HRV--heart rate variability analysis software. Comput. Meth. Prog. Biomed. 113, 1 (2014), 210--220.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ane Alberdi, Asier Aztiria, and Adrian Basarab. 2016. Towards an automatic early stress recognition system for office environments based on multimodal measurements: A review. J. Biomed. Inf. 59 (2016), 49--75.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Burcu Cinaz, Bert Arnrich, Roberto Marca, and Gerhard Tröster. 2013. Monitoring of mental workload levels during an everyday life office-work scenario. Person. Ubiq. Comput. 17, 2 (Feb. 2013), 229--239.Google ScholarGoogle Scholar
  43. Marcus Vollmer. 2019. HRVTool—An open-source Matlab toolbox for analyzing HRV. In Computing in Cardiology 2019, Vol. 46. IEEE.Google ScholarGoogle Scholar
  44. S. Greene, H. Thapliyal, and A. Caban-Holt. 2016. A survey of affective computing for stress detection: Evaluating technologies in stress detection for better health. IEEE Consum. Electron. Mag. 5, 4 (Oct. 2016), 44--56.Google ScholarGoogle ScholarCross RefCross Ref
  45. Nicholas R. Lomb. 1976. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 2 (1976), 447--462.Google ScholarGoogle ScholarCross RefCross Ref
  46. Muhammad Atif Tahir, Josef Kittler, Krystian Mikolajczyk, and Fei Yan. 2009. A multiple expert approach to the class imbalance problem using inverse random under sampling. In Multiple Classifier Systems, Jón Atli Benediktsson, Josef Kittler, and Fabio Roli (Eds.). Springer Berlin, 82--91.Google ScholarGoogle Scholar
  47. François Chollet et al. 2015. Keras. Retrieved from: https://keras.io.Google ScholarGoogle Scholar
  48. Adrian Nilsson, Simon Smith, Gregor Ulm, Emil Gustavsson, and Mats Jirstrand. 2018. A performance evaluation of federated learning algorithms. In Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning (DIDL'18). Association for Computing Machinery, 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Federated Biomedical Informatics Github Repository. 2020. Retrieved from: https://github.com/ysaidcan/federated-biomedical-informatics.Google ScholarGoogle Scholar
  50. 2019. Google, TensorFlow Federated. https://www.tensorflow.org/federated.Google ScholarGoogle Scholar
  51. Ian R. Kleckner, Mallory J. Feldman, Matthew S. Goodwin, and Karen S. Quigley. 2020. Framework for selecting and benchmarking mobile devices in psychophysiological research. Behavior Research Methods. Springer, 1--18.Google ScholarGoogle Scholar
  52. Luca Menghini, Evelyn Gianfranchi, Nicola Cellini, Elisabetta Patron, Mariaelena Tagliabue, and Michela Sarlo. 2019. Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions. Psychophysiology 56, 11 (2019), e13441.Google ScholarGoogle ScholarCross RefCross Ref
  53. R. K. Nath, H. Thapliyal, and A. Caban-Holt. 2020. Validating physiological stress detection model using cortisol as stress bio marker. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE’20). 1--5.Google ScholarGoogle Scholar
  54. Y. S. Can, N. Chalabianloo, D. Ekiz, J. Fernandez-Alvarez, G. Riva, and C. Ersoy. 2020. Personal stress-level clustering and decision-level smoothing to enhance the performance of ambulatory stress detection with smartwatches. IEEE Access (2020), 1--1. DOI:http://dx.doi.org/10.1109/ACCESS.2020.2975351Google ScholarGoogle Scholar
  55. Sandra G. Hart. 1986. NASA task load index (TLX); 20 years later. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 50. Sage publications Sage CA, 904--908.Google ScholarGoogle Scholar
  56. Clemens Kirschbaum, K.-M. Pirke, and Dirk H. Hellhammer. 1993. The “Trier Social Stress Test”—A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28, 1–2 (1993), 76--81.Google ScholarGoogle ScholarCross RefCross Ref
  57. Yekta Said Can, Dilara Gokay, Dilruba Reyyan Kılıç, Deniz Ekiz, Niaz Chalabianloo, and Cem Ersoy. 2020. How laboratory experiments can be exploited for monitoring stress in the wild: A bridge between laboratory and daily life. Sensors 20, 3 (2020).Google ScholarGoogle Scholar
  58. Sheldon Cohen, Tom Kamarck, and Robin Mermelstein. 1983. A global measure of perceived stress. J. Health Soc. Behav. 24, 4 (1983), 385--396.Google ScholarGoogle ScholarCross RefCross Ref
  59. K. Plarre, A. Raij, S. M. Hossain, A. A. Ali, M. Nakajima, M. Al’absi, E. Ertin, T. Kamarck, S. Kumar, M. Scott, D. Siewiorek, A. Smailagic, and L. E. Wittmers. 2011. Continuous inference of psychological stress from sensory measurements collected in the natural environment. In Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks. 97--108.Google ScholarGoogle Scholar
  60. Anirudh Kasturi, Anish Reddy Ellore, and Chittaranjan Hota. 2020. Fusion learning: A one shot federated learning. In Computational Science—ICCS 2020, Valeria V. Krzhizhanovskaya, Gábor Závodszky, Michael H. Lees, Jack J. Dongarra, Peter M. A. Sloot, Sérgio Brissos, and João Teixeira (Eds.). Springer International Publishing, Cham, 424--436.Google ScholarGoogle Scholar

Index Terms

  1. Privacy-preserving Federated Deep Learning for Wearable IoT-based Biomedical Monitoring

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Internet Technology
          ACM Transactions on Internet Technology  Volume 21, Issue 1
          Visions Paper, Regular Papers, SI: Blockchain in E-Commerce, and SI: Human-Centered Security, Privacy, and Trust in the Internet of Things
          February 2021
          534 pages
          ISSN:1533-5399
          EISSN:1557-6051
          DOI:10.1145/3441681
          • Editor:
          • Ling Liu
          Issue’s Table of Contents

          Copyright © 2021 ACM

          © 2021 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 5 January 2021
          • Accepted: 1 October 2020
          • Revised: 1 September 2020
          • Received: 1 June 2020
          Published in toit Volume 21, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format