skip to main content
10.1145/3429351.3431742acmconferencesArticle/Chapter ViewAbstractPublication PagesmiddlewareConference Proceedingsconference-collections
short-paper

Rubberband: Enabling Elastic Federated Learning with the Temporary State Management

Published:22 December 2020Publication History

ABSTRACT

Federated learning (FL) applications face the challenges of managing the temporary state at scale combined with the limited compute and storage capacity of the infrastructure and the heterogeneity/dynamism of the deployment environment. The paper proposes Rubberband - a middleware designed to manage the state in the FL deployments at scale.

References

  1. TensorFlow Authors. 2019. TensorFlow Federated. https://www.tensorflow.org/federated. Accessed: 2020-10-28.Google ScholarGoogle Scholar
  2. M. Dian. Bah, Adel Hafiane, and Raphael Canals. 2018. Deep Learning with unsupervised data labeling for weeds detection on UAV images. arXiv:1805.12395 [cs.CV]Google ScholarGoogle Scholar
  3. Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. 2016. End to End Learning for Self-Driving Cars. arXiv:1604.07316 [cs.CV]Google ScholarGoogle Scholar
  4. Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečný, Stefano Mazzocchi, H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and Jason Roselander. 2019. Towards Federated Learning at Scale: System Design. arXiv:1902.01046 [cs.LG]Google ScholarGoogle Scholar
  5. Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Practical Secure Aggregation for Privacy-Preserving Machine Learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS '17). Association for Computing Machinery, New York, NY, USA, 1175--1191. https://doi.org/10.1145/3133956.3133982 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C/LM LAN/MAN Standards Committee. [n.d.]. IEEE P802.11ax -IEEE Draft Standard for Information Technology - Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks - Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment Enhancements for High Efficiency WLAN. https://standards.ieee.org/project/802_11ax.html. Accessed: 2020-08-26.Google ScholarGoogle Scholar
  7. Ayn de Jesus. 2019. Drones for Agriculture - Current Applications. https://emerj.com/ai-sector-overviews/drones-for-agriculture-current-applications/. Accessed: 2020-07-18.Google ScholarGoogle Scholar
  8. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09.Google ScholarGoogle Scholar
  9. Kevin Dick, Luke Russell, Yasmina Souley Dosso, Felix Kwamena, and James R. Green. 2019. Deep Learning for Critical Infrastructure Resilience. Journal of Infrastructure Systems 25, 2 (2019), 05019003. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000477Google ScholarGoogle ScholarCross RefCross Ref
  10. Jessica Dolcourt. [n.d.]. We tested 5G speeds across the globe. https://www.cnet.com/features/we-ran-5g-speed-tests-on-verizon-at-t-ee-and-more-heres-what-we-found/. Accessed: 2020-08-24.Google ScholarGoogle Scholar
  11. Adam Grzywaczewski. [n.d.]. Training AI for Self-Driving Vehicles: the Challenge of Scale. https://developer.nvidia.com/blog/training-self-driving-vehicles-challenge-scale/. Accessed: 2020-07-18.Google ScholarGoogle Scholar
  12. Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D'Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. 2019. Advances and Open Problems in Federated Learning.arXiv:1912.04977 [cs.LG]Google ScholarGoogle Scholar
  13. Wenqi Li, Fausto Milletarì, Daguang Xu, Nicola Rieke, Jonny Hancox, Wentao Zhu, Maximilian Baust, Yan Cheng, Sébastien Ourselin, M. Jorge Cardoso, and Andrew Feng. 2019. Privacy-Preserving Federated Brain Tumour Segmentation. In Machine Learning in Medical Imaging, Heung-Il Suk, Mingxia Liu, Pingkun Yan, and Chunfeng Lian (Eds.). Springer International Publishing, Cham, 133--141.Google ScholarGoogle Scholar
  14. M. Liu, H.Jiang, J. Chen, A. Badokhon, X. Wei, and M. Huang. 2016. A Collaborative Privacy-Preserving Deep Learning System in Distributed Mobile Environment. In 2016 International Conference on Computational Science and Computational Intelligence (CSCI). 192--197.Google ScholarGoogle Scholar
  15. Elmer R. Magsino and Ivan Wang-Hei Ho. 2018. Roadside Unit Allocation for Fog-Based Information Sharing in Vehicular Networks. In Proceedings of the 1st ACM International Workshop on Smart Cities and Fog Computing (Shenzhen, China) (CitiFog'18). Association for Computing Machinery, New York, NY, USA, 7--12. https://doi.org/10.1145/3277893.3277897 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas. 2016. Communication-Efficient Learning of Deep Networks from Decentralized Data. arXiv:1602.05629 [cs.LG]Google ScholarGoogle Scholar
  17. Pitch Patarasuk and Xin Yuan. 2009. Bandwidth Optimal All-Reduce Algorithms for Clusters of Workstations. J. Parallel Distrib. Comput. 69, 2 (Feb. 2009), 117--124. https://doi.org/10.1016/j.jpdc.2008.09.002 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. 2019. Do ImageNet Classifiers Generalize to ImageNet? arXiv:1902.10811 [cs.CV]Google ScholarGoogle Scholar
  19. Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletarì, Holger R. Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N. Galtier, Bennett A. Landman, Klaus Maier-Hein, Sébastien Ourselin, Micah Sheller, Ronald M. Summers, Andrew Trask, Daguang Xu, Maximilian Baust, and M. Jorge Cardoso. 2020. The future of digital health with federated learning. npj Digital Medicine 3, 1 (14 Sep 2020), 119. https://doi.org/10.1038/s41746-020-00323-1Google ScholarGoogle Scholar
  20. Antony Rowstron and Peter Druschel. 2001. Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems. In Middleware 2001, Rachid Guerraoui (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 329--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Abhijit Guha Roy, Shayan Siddiqui, Sebastian Pölsterl, Nassir Navab, and Christian Wachinger. 2019. BrainTorrent: A Peer-to-Peer Environment for Decentralized Federated Learning. arXiv:1905.06731 [cs.LG]Google ScholarGoogle Scholar
  22. Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Mancuso, Daniel Rueckert, and Jonathan Passerat-Palmbach. 2018. A generic framework for privacy preserving deep learning. arXiv:1811.04017 [cs.LG]Google ScholarGoogle Scholar
  23. S. Samarakoon, M. Bennis, W. Saad, and M. Debbah. 2018. Federated Learning for Ultra-Reliable Low-Latency V2V Communications. In 2018 IEEE Global Communications Conference (GLOBECOM). 1--7.Google ScholarGoogle Scholar
  24. Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed deep learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018).Google ScholarGoogle Scholar
  25. Muhammad Shayan, Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh. 2018. Biscotti: A Ledger for Private and Secure Peer-to-Peer Machine Learning. arXiv:1811.09904 [cs.LG]Google ScholarGoogle Scholar
  26. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. 2001. Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications. In Proceedings of the 2001 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (San Diego, California, USA) (SIGCOMM '01). Association for Computing Machinery, New York, NY, USA, 149--160. https://doi.org/10.1145/383059.383071 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. CISCO Systems. 2019. Cisco Visual Networking Index 2018. Technical Report. https://cyrekdigital.com/pl/blog/content-marketing-trendy-na-rok-2019/white-paper-c11-741490.pdfGoogle ScholarGoogle Scholar
  28. CISCO Systems. 2019. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2017--2022. Technical Report. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.htmlGoogle ScholarGoogle Scholar
  29. Keysight Technologies. [n.d.]. MIMO Technology in LTE Operation and Measurement. https://www.keysight.com/en/en/assets/7018-02324/application-notes/5990-4760.pdf. Accessed: 2020-08-26.Google ScholarGoogle Scholar
  30. Animesh Trivedi, Lin Wang, Henri Bal, and Alexandru Iosup. 2020. Sharing and Caring of Data at the Edge. In 3rd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 20). USENIX Association. https://www.usenix.org/conference/hotedge20/presentation/trivediGoogle ScholarGoogle Scholar
  31. Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. 2005. CYCLON: Inexpensive Membership Management for Unstructured P2P Overlays. Journal of Network and Systems Management 13, 2 (01 Jun 2005), 197--217. https://doi.org/10.1007/s10922-005-4441-xGoogle ScholarGoogle ScholarCross RefCross Ref
  32. M. Wu and J. Luo. 2019. Wearable technology applications in healthcare: A literature review. Online Journal of Nursing Informatics (OJNI) 23, 3 (2019). https://www.himss.org/resources/wearable-technology-applications-healthcare-literature-reviewGoogle ScholarGoogle Scholar
  33. Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ramage, and Françoise Beaufays. 2018. Applied Federated Learning: Improving Google Keyboard Query Suggestions. arXiv:1812.02903 [cs.LG]Google ScholarGoogle Scholar

Index Terms

  1. Rubberband: Enabling Elastic Federated Learning with the Temporary State Management

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        Middleware'20 Doctoral Symposium: Proceedings of the 21st International Middleware Conference Doctoral Symposium
        December 2020
        55 pages
        ISBN:9781450382007
        DOI:10.1145/3429351

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 December 2020

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • short-paper
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate203of948submissions,21%

        Upcoming Conference

        MIDDLEWARE '24
        25th International Middleware Conference
        December 2 - 6, 2024
        Hong Kong , Hong Kong

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader