skip to main content
10.1145/3429889.3429942acmotherconferencesArticle/Chapter ViewAbstractPublication PagesisaimsConference Proceedingsconference-collections
research-article

Immunotherapies For Cancer, a Promising Cure?

Published:04 December 2020Publication History

ABSTRACT

Cancer is a common cause of death around the world. To date, surgery is still the only curative option for most types of cancer. Moreover, the majority of cancer is a prominent resistance to traditional therapies that we have long been using, including chemotherapy and radiotherapy. In recent years, different types of immune cells have been recognized as a critical component in therapies. Especially, the cancer-immunotherapy has come into the spotlight. In a number of clinical trials, it has shown capabilities of addressing the defects of transitional therapies, achieving complete eradication of neoplasms and constructing a long-lasting immunity to prevent recurrence. Currently, remarkable progress and innovations in methods and approaches are made. In this article, we first discuss the main types of immune cells participated in anti-tumor/cancer activities, immunotherapy and its applications in multiple fields. Next, we summarize the associations between the immune system and cancer, and current immunotherapies for cancer, including specific examples or experimental trials, with the advantages and disadvantages of each. Despite many unsolved questions regarding immunotherapy such as financial concerns, the current paper overall demonstrates that the development of immunotherapy is an emerging and potentially influential therapy for improving the survival rate and prognosis of cancer.

References

  1. Piana, R. (2015). A Snapshot of Early Immunotherapy. Retrieved August 16, 2020, from https://ascopost.com/issues/october-25-2015/a-snapshot-of-early-immunotherapy/Google ScholarGoogle Scholar
  2. What is Immunotherapy? (2016). Retrieved September 12, 2020, from https://www.cancerresearch.org/immunotherapy/what-is-immunotherapyGoogle ScholarGoogle Scholar
  3. Janeway, C. A., Jr., Travers, P., Walport, M., & Shlomchik, M. J. (2001). Immunobiology, 5th edition: The Immune System in Health and Disease. New York City, New York: Garland Publishing.Google ScholarGoogle Scholar
  4. Kondo, M., Weissman, I. L., & Akashi, K. (1997). Identification of Clonogenic Common Lymphoid Progenitors in Mouse Bone Marrow. Cell, 91(5), 661--672. doi:10.1016/s0092-8674(00)80453-5Google ScholarGoogle ScholarCross RefCross Ref
  5. Paul, S., & Lal, G. (2017). The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Frontiers in Immunology, 8. doi:10.3389/fimmu.2017.01124Google ScholarGoogle Scholar
  6. Brandstadter, J. D., & Yang, Y. (2011). Natural Killer Cell Responses to Viral Infection. Journal of Innate Immunity, 3(3), 274--279. doi:10.1159/000324176Google ScholarGoogle ScholarCross RefCross Ref
  7. Schoenborn, J. R., & Wilson, C. B. (2007). Regulation of Interferon-γ During Innate and Adaptive Immune Responses. Advances in Immunology, 41--101. doi:10.1016/s0065-2776(07)96002-2Google ScholarGoogle Scholar
  8. Wagtmann, N., Rajagopalan, S., Winter, C. C., Peruui, M., & Long, E. O. (1995). Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity, 3(6), 801--809. doi:10.1016/1074-7613(95)90069-1Google ScholarGoogle ScholarCross RefCross Ref
  9. Mandelboim, O., Lieberman, N., Lev, M., Paul, L., Arnon, T. I., Bushkin, Y., ... Porgador, A. (2001). Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature, 409(6823), 1055--1060. doi:10.1038/35059110Google ScholarGoogle ScholarCross RefCross Ref
  10. Jamieson, A., Diefenbach, A., Mcmahon, C., Xiong, N., Carlyle, J., & Raulet, D. (2004). The Role of the NKG2D Immunoreceptor in Immune Cell Activation and Natural Killing. Immunity, 20(6), 799. doi:10.1016/j.immuni.2004.05.003Google ScholarGoogle ScholarCross RefCross Ref
  11. Marcus, A., Gowen, B. G., Thompson, T. W., Iannello, A., Ardolino, M., Deng, W., ... Raulet, D. H. (2014). Recognition of Tumors by the Innate Immune System and Natural Killer Cells. Advances in Immunology, 91--128. doi:10.1016/b978-0-12-800267-4.00003-1Google ScholarGoogle Scholar
  12. Geissmann, F., Manz, M. G., Jung, S., Sieweke, M. H., Merad, M., & Ley, K. (2010). Development of Monocytes, Macrophages, and Dendritic Cells. Science, 327(5966), 656--661. doi:10.1126/science.1178331Google ScholarGoogle Scholar
  13. Dalod, M., Chelbi, R., Malissen, B., & Lawrence, T. (2014). Dendritic cell maturation: Functional specialization through signaling specificity and transcriptional programming. The EMBO Journal, 33(10), 1104--1116. doi:10.1002/embj.201488027Google ScholarGoogle ScholarCross RefCross Ref
  14. Trombetta, E. S. (2003). Activation of Lysosomal Function During Dendritic Cell Maturation. Science, 299(5611), 1400--1403. doi:10.1126/science.1080106Google ScholarGoogle Scholar
  15. Colvin, B. L., Matta, B. M., & Thomson, A. W. (2008). Dendritic Cells and Chemokine-Directed Migration in Transplantation: Where Are We Headed? Clinics in Laboratory Medicine, 28(3), 375--384. doi:10.1016/j.cll.2008.07.003Google ScholarGoogle ScholarCross RefCross Ref
  16. Tai, Y., Wang, Q., Korner, H., Zhang, L., & Wei, W. (2018). Molecular Mechanisms of T Cells Activation by Dendritic Cells in Autoimmune Diseases. Frontiers in Pharmacology, 9. doi:10.3389/fphar.2018.00642Google ScholarGoogle Scholar
  17. Krummel, M. F., & Allison, J. P. (1995). CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. The Journal of Experimental Medicine, 182(2), 459--465. doi:10.1084/jem.182.2.459Google ScholarGoogle ScholarCross RefCross Ref
  18. Epelman, S., Lavine, K., & Randolph, G. (2014). Origin and Functions of Tissue Macrophages. Immunity, 41(1), 21--35. doi:10.1016/j.immuni.2014.06.013Google ScholarGoogle Scholar
  19. Viola, A., Munari, F., Sánchez-Rodríguez, R., Scolaro, T., & Castegna, A. (2019). The Metabolic Signature of Macrophage Responses. Frontiers in Immunology, 10. doi:10.3389/fimmu.2019.01462Google ScholarGoogle Scholar
  20. Barker, R. N., Erwig, L., Hill, K. S., Devine, A., Pearce, W. P., & Rees, A. J. (2002). Antigen presentation by macrophages is enhanced by the uptake of necrotic, but not apoptotic, cells. Clinical & Experimental Immunology, 127(2), 220--225. doi:10.1046/j.1365-2249.2002.01774.xGoogle ScholarGoogle ScholarCross RefCross Ref
  21. Zhang, X., & Mosser, D. (2008). Macrophage activation by endogenous danger signals. The Journal of Pathology, 214(2), 161--178. doi:10.1002/path.2284Google ScholarGoogle ScholarCross RefCross Ref
  22. Slauch, J. M. (2011). How does the oxidative burst of macrophages kill bacteria? Still an open question. Molecular Microbiology, 80(3), 580--583. doi:10.1111/j.1365-2958.2011.07612.xGoogle ScholarGoogle ScholarCross RefCross Ref
  23. Underhill, D. M., Bassetti, M., Rudensky, A., & Aderem, A. (1999). Dynamic Interactions of Macrophages with T Cells during Antigen Presentation. The Journal of Experimental Medicine, 190(12), 1909--1914. doi:10.1084/jem.190.12.1909Google ScholarGoogle ScholarCross RefCross Ref
  24. Fischer, C. D., Beatty, J. K., Duquette, S. C., Morck, D. W., Lucas, M. J., & Buret, A. G. (2013). Direct and Indirect Anti-Inflammatory Effects of Tulathromycin in Bovine Macrophages: Inhibition of CXCL-8 Secretion, Induction of Apoptosis, and Promotion of Efferocytosis. Antimicrobial Agents and Chemotherapy, 57(3), 1385--1393. doi:10.1128/aac.01598-12Google ScholarGoogle ScholarCross RefCross Ref
  25. Ringehan, M., Mckeating, J. A., & Protzer, U. (2017). Viral hepatitis and liver cancer. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1732), 20160274. doi:10.1098/rstb.2016.0274Google ScholarGoogle ScholarCross RefCross Ref
  26. Peng, H., & Tian, Z. (2017). Natural Killer Cell Memory: Progress and Implications. Frontiers in Immunology, 8. doi:10.3389/fimmu.2017.01143Google ScholarGoogle Scholar
  27. Ratajczak, W., Niedźwiedzka-Rystwej, P., Tokarz-Deptuła, B., & Deptuła, W. (2018). Immunological memory cells. Central European Journal of Immunology, 43(2), 194--203. doi:10.5114/ceji.2018.77390Google ScholarGoogle ScholarCross RefCross Ref
  28. Lai, A. Y., & Kondo, M. (2008). T and B lymphocyte differentiation from hematopoietic stem cell. Seminars in Immunology, 20(4), 207--212. doi:10.1016/j.smim.2008.05.002Google ScholarGoogle ScholarCross RefCross Ref
  29. Zúñiga-Pflücker, J. C. (2004). T-cell development made simple. Nature Reviews Immunology, 4(1), 67--72. doi:10.1038/nri1257Google ScholarGoogle ScholarCross RefCross Ref
  30. Smeltz, R. B., Chen, J., Ehrhardt, R., & Shevach, E. M. (2002). Role of IFN-γ in Th1 Differentiation: IFN-γ Regulates IL-18Rα Expression by Preventing the Negative Effects of IL-4 and by Inducing/Maintaining IL-12 Receptor β2 Expression. The Journal of Immunology, 168(12), 6165--6172. doi:10.4049/jimmunol.168.12.6165Google ScholarGoogle ScholarCross RefCross Ref
  31. Hoffman, R. (2018). Hematology: Basic principles and practice. Philadelphia, Pennsylvania: Elsevier.Google ScholarGoogle Scholar
  32. Chen, L., Grabowski, K. A., Xin, J., Coleman, J., Huang, Z., Espiritu, B., ... Huang, H. (2004). IL-4 Induces Differentiation and Expansion of Th2 Cytokine-Producing Eosinophils. The Journal of Immunology, 172(4), 2059--2066. doi:10.4049/jimmunol.172.4.2059Google ScholarGoogle ScholarCross RefCross Ref
  33. Bao, K., & Reinhardt, R. L. (2015). The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine, 75(1), 25--37. doi:10.1016/j.cyto.2015.05.008Google ScholarGoogle ScholarCross RefCross Ref
  34. Walker, J. A., & Mckenzie, A. N. (2017). TH2 cell development and function. Nature Reviews Immunology, 18(2), 121--133. doi:10.1038/nri.2017.118Google ScholarGoogle ScholarCross RefCross Ref
  35. Qin, H., Wang, L., Feng, T., Elson, C. O., Niyongere, S. A., Lee, S. J., ... Cong, Y. (2009). TGF-β Promotes Th17 Cell Development through Inhibition of SOCS3. The Journal of Immunology, 183(1), 97--105. doi:10.4049/jimmunol.0801986Google ScholarGoogle ScholarCross RefCross Ref
  36. Khader, S. A., & Gopal, R. (2010). IL-17 in protective immunity to intracellular pathogens. Virulence, 1(5), 423--427. doi:10.4161/viru.1.5.12862Google ScholarGoogle ScholarCross RefCross Ref
  37. Zhang, N., & Bevan, M. (2011). CD8+ T Cells: Foot Soldiers of the Immune System. Immunity, 35(2), 161--168. doi:10.1016/j.immuni.2011.07.010Google ScholarGoogle Scholar
  38. Bachmann, M. F., & Oxenius, A. (2007). Interleukin 2: From immunostimulation to immunoregulation and back again. EMBO Reports, 8(12), 1142--1148. doi:10.1038/sj.embor.7401099Google ScholarGoogle ScholarCross RefCross Ref
  39. Rudensky, A. Y. (2011). Regulatory T cells and Foxp3. Immunological Reviews, 241(1), 260--268. doi:10.1111/j.1600-065x.2011.01018.xGoogle ScholarGoogle ScholarCross RefCross Ref
  40. Corthay, A. (2009). How do Regulatory T Cells Work? Scandinavian Journal of Immunology, 70(4), 326--336. doi:10.1111/j.1365-3083.2009.02308.xGoogle ScholarGoogle ScholarCross RefCross Ref
  41. Plitas, G., & Rudensky, A. Y. (2016). Regulatory T Cells: Differentiation and Function. Cancer Immunology Research, 4(9), 721--725. doi:10.1158/2326-6066.cir-16-0193Google ScholarGoogle ScholarCross RefCross Ref
  42. Chen, X., & Jensen, P. E. (2008). The role of B lymphocytes as antigen-presenting cells. Archivum Immunologiae Et Therapiae Experimentalis, 56(2), 77--83. doi:10.1007/s00005-008-0014-5Google ScholarGoogle ScholarCross RefCross Ref
  43. Horikawa, K., & Takatsu, K. (2006). Interleukin-5 regulates genes involved in B-cell terminal maturation. Immunology, 0(0). doi:10.1111/j.1365-2567.2006.02382.xGoogle ScholarGoogle Scholar
  44. Wabl, M., & Steinberg, C. (1996). Affinity maturation and class switching. Current Opinion in Immunology, 8(1), 89--92. doi:10.1016/s0952-7915(96)80110-5Google ScholarGoogle ScholarCross RefCross Ref
  45. Cancer. (n.d.). Retrieved September 13, 2020, from https://www.who.int/news-room/fact-sheets/detail/cancerGoogle ScholarGoogle Scholar
  46. Fridman, J. S., & Lowe, S. W. (2003). Control of apoptosis by p53. Oncogene, 22(56), 9030--9040. doi:10.1038/sj.onc.1207116Google ScholarGoogle ScholarCross RefCross Ref
  47. Giacinti, C., & Giordano, A. (2006). RB and cell cycle progression. Oncogene, 25(38), 5220--5227. doi:10.1038/sj.onc.1209615Google ScholarGoogle ScholarCross RefCross Ref
  48. Gonzalez, H., Hagerling, C., & Werb, Z. (2018). Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes & Development, 32(19-20), 1267--1284. doi:10.1101/gad.314617.118Google ScholarGoogle ScholarCross RefCross Ref
  49. Schreiber, R. D., Old, L. J., & Smyth, M. J. (2011). Cancer Immunoediting: Integrating Immunity's Roles in Cancer Suppression and Promotion. Science, 331(6024), 1565--1570. doi:10.1126/science.1203486Google ScholarGoogle ScholarCross RefCross Ref
  50. Messerschmidt, J. L., Prendergast, G. C., & Messerschmidt, G. L. (2016). How Cancers Escape Immune Destruction and Mechanisms of Action for the New Significantly Active Immune Therapies: Helping Nonimmunologists Decipher Recent Advances. The Oncologist, 21(2), 233--243. doi:10.1634/theoncologist.2015-0282Google ScholarGoogle ScholarCross RefCross Ref
  51. Liu, B., Ezeogu, L., Zellmer, L., Yu, B., Xu, N., & Liao, D. J. (2015). Protecting the normal in order to better kill the cancer. Cancer Medicine, 4(9), 1394--1403. doi:10.1002/cam4.488Google ScholarGoogle ScholarCross RefCross Ref
  52. Wu, J., & Waxman, D. J. (2018). Immunogenic chemotherapy: Dose and schedule dependence and combination with immunotherapy. Cancer Letters, 419, 210--221. doi:10.1016/j.canlet.2018.01.050Google ScholarGoogle ScholarCross RefCross Ref
  53. Wraith, D. C. (2017). The Future of Immunotherapy: A 20-Year Perspective. Frontiers in Immunology, 8. doi:10.3389/fimmu.2017.01668Google ScholarGoogle Scholar
  54. Clem, A. (2011). Fundamentals of vaccine immunology. Journal of Global Infectious Diseases, 3(1), 73. doi:10.4103/0974-777x.77299Google ScholarGoogle ScholarCross RefCross Ref
  55. Ton, A. M., Kox, M., Abdo, W. F., & Pickkers, P. (2018). Precision Immunotherapy for Sepsis. Frontiers in Immunology, 9. doi:10.3389/fimmu.2018.01926Google ScholarGoogle Scholar
  56. Kudo, M., Ishigatsubo, Y., & Aoki, I. (2013). Pathology of asthma. Frontiers in Microbiology, 4(263). doi:10.3389/fmicb.2013.00263Google ScholarGoogle Scholar
  57. Lin, S. Y., Azar, A., Suarez-Cuervo, C., Diette, G. B., Brigham, E., Rice, J., ... Robinson, K. A. (2017). The Role of Immunotherapy in the Treatment of Asthma. doi:10.23970/ahrqepccer196Google ScholarGoogle Scholar
  58. Peakman, M., & Dayan, C. M. (2001). Antigen-specific immunotherapy for autoimmune disease: Fighting fire with fire? Immunology, 104(4), 361--366. doi:10.1046/j.1365-2567.2001.01335.xGoogle ScholarGoogle ScholarCross RefCross Ref
  59. Feldmann, M., & Steinman, L. (2005). Design of effective immunotherapy for human autoimmunity. Nature, 435(7042), 612--619. doi:10.1038/nature03727Google ScholarGoogle ScholarCross RefCross Ref
  60. Goel, G., & Sun, W. (2014). Cancer immunotherapy in clinical practice---the past, present, and future. Chinese Journal of Cancer, 33(9), 445--457. doi:10.5732/cjc.014.10123Google ScholarGoogle ScholarCross RefCross Ref
  61. Hoption Cann, S. A., van Netten, J. P., & van Netten, C. (2003). Dr William Coley and tumour regression: a place in history or in the future. Postgraduate medical journal, 79(938), 672--680.Google ScholarGoogle Scholar
  62. Hurst, J. H. (2015). Cancer immunotherapy innovator James Allison receives the 2015 Lasker~DeBakey Clinical Medical Research Award. Journal of Clinical Investigation, 125(10), 3732--3736. doi:10.1172/jci84236Google ScholarGoogle ScholarCross RefCross Ref
  63. Rafei, H., El-Bahesh, E., Finianos, A., Nassereddine, S., & Tabbara, I. (2017). Immune-based Therapies for Non-small Cell Lung Cancer. Anticancer Research, 37(2), 377--388. doi:10.21873/anticanres.11330Google ScholarGoogle ScholarCross RefCross Ref
  64. Baxter, D. (2014). Active and passive immunization for cancer. Human Vaccines & Immunotherapeutics, 10(7), 2123--2129. doi:10.4161/hv.29604Google ScholarGoogle ScholarCross RefCross Ref
  65. Mcshane, H. (2011). Tuberculosis vaccines: Beyond bacille Calmette-Guérin. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1579), 2782--2789. doi:10.1098/rstb.2011.0097Google ScholarGoogle ScholarCross RefCross Ref
  66. Sylvester, R. J., Meijden, A. P., & Lamm, D. L. (2002). Intravesical Bacillus Calmette-Guerin Reduces the Risk of Progression in Patients with Superficial Bladder Cancer: A Meta-analysis of the Published Results of Randomized Clinical Trials. Journal of Urology, 168(5), 1964--1970. doi:10.1016/s0022-5347(05)64273-5Google ScholarGoogle ScholarCross RefCross Ref
  67. Ratliff, T. L., Kavoussi, L. R., & Catalona, W. J. (1988). Role of Fibronectin in Intravesical BCG Therapy for Superficial Bladder Cancer. Journal of Urology, 139(2), 410--414. doi:10.1016/s0022-5347(17)42445-1Google ScholarGoogle Scholar
  68. Green, J., Fuge, O., Allchorne, P., & Vasdev, N. (2015). Immunotherapy for bladder cancer. Research and Reports in Urology, 65. doi:10.2147/rru.s63447Google ScholarGoogle Scholar
  69. Guallar-Garrido, S., & Julián, E. (2020). Bacillus Calmette-Guérin (BCG) Therapy for Bladder Cancer: An Update. ImmunoTargets and Therapy, Volume 9, 1--11. doi:10.2147/itt.s202006Google ScholarGoogle ScholarCross RefCross Ref
  70. Anassi, E., & Ndefo, U. A. (2011). Sipuleucel-T (provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. P & T: a peer-reviewed journal for formulary management, 36(4), 197--202.Google ScholarGoogle Scholar
  71. Small, E. J., Schellhammer, P. F., Higano, C. S., Redfern, C. H., Nemunaitis, J. J., Valone, F. H., ... Hershberg, R. M. (2006). Placebo-Controlled Phase III Trial of Immunologic Therapy with Sipuleucel-T (APC8015) in Patients with Metastatic, Asymptomatic Hormone Refractory Prostate Cancer. Journal of Clinical Oncology, 24(19), 3089--3094. doi:10.1200/jco.2005.04.5252Google ScholarGoogle ScholarCross RefCross Ref
  72. Kong, H. Y., & Byun, J. (2013). Emerging Roles of Human Prostatic Acid Phosphatase. Biomolecules and Therapeutics, 21(1), 10--20. doi:10.4062/biomolther.2012.095Google ScholarGoogle ScholarCross RefCross Ref
  73. Greter, M., Helft, J., Chow, A., Hashimoto, D., Mortha, A., Agudo-Cantero, J., ... Merad, M. (2012). GM-CSF Controls Nonlymphoid Tissue Dendritic Cell Homeostasis but Is Dispensable for the Differentiation of Inflammatory Dendritic Cells. Immunity, 36(6), 1031--1046. doi:10.1016/j.immuni.2012.03.027Google ScholarGoogle ScholarCross RefCross Ref
  74. Bhattacharya, P., Thiruppathi, M., Elshabrawy, H. A., Alharshawi, K., Kumar, P., & Prabhakar, B. S. (2015). GM-CSF: An immune modulatory cytokine that can suppress autoimmunity. Cytokine, 75(2), 261--271. doi:10.1016/j.cyto.2015.05.030Google ScholarGoogle ScholarCross RefCross Ref
  75. Terunuma, H., Deng, X., Nishino, N., & Watanabe, K. (2013). NK cell-based autologous immune enhancement therapy (AIET) for cancer. Journal of stem cells & regenerative medicine, 9(1), 9--13. doi:10.46582/jsrm.0901003Google ScholarGoogle ScholarCross RefCross Ref
  76. Nigro, C. L., Macagno, M., Sangiolo, D., Bertolaccini, L., Aglietta, M., & Merlano, M. C. (2019). NK-mediated antibody-dependent cell-mediated cytotoxicity in solid tumors: Biological evidence and clinical perspectives. Annals of Translational Medicine, 7(5), 105--105. doi:10.21037/atm.2019.01.42Google ScholarGoogle ScholarCross RefCross Ref
  77. Ratnavelu, K., Subramani, B., Pullai, C. R., Krishnan, K., Sugadan, S. D., Rao, M. S., ... Hiroshi, T. (2013). Autologous immune enhancement therapy against an advanced epithelioid sarcoma: A case report. Oncology Letters, 5(5), 1457--1460. doi:10.3892/ol.2013.1247Google ScholarGoogle ScholarCross RefCross Ref
  78. Coca, S., Perez-Piqueras, J., Martinez, D., Colmenarejo, A., Saez, M. A., Vallejo, C., ... Moreno, M. (1997). The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer, 79(12), 2320--2328. doi:10.1002/(sici)1097-0142(19970615)79:123.0.co;2-pGoogle ScholarGoogle ScholarCross RefCross Ref
  79. Agha-Mohammadi, S., & Lotze, M. T. (2000). Immunomodulation of cancer: Potential use of selectively replicating agents. Journal of Clinical Investigation, 105(9), 1173--1176. doi:10.1172/jci10026Google ScholarGoogle ScholarCross RefCross Ref
  80. Lee, S., & Margolin, K. (2011). Cytokines in Cancer Immunotherapy. Cancers, 3(4), 3856--3893. doi:10.3390/cancers3043856Google ScholarGoogle ScholarCross RefCross Ref
  81. Voss, S., Hank, J., Nobis, C., Fisch, P., Sosman, J., & Sondel, P. (1989). Serum levels of the low-affinity interleukin-2 receptor molecule (TAC) during IL-2 therapy reflect systemic lymphoid mass activation. Cancer Immunology Immunotherapy, 29(4). doi:10.1007/bf00199214Google ScholarGoogle Scholar
  82. Davar, D., Ding, F., Saul, M., Sander, C., Tarhini, A. A., Kirkwood, J. M., & Tawbi, H. A. (2017). High-dose interleukin-2 (HD IL-2) for advanced melanoma: A single center experience from the University of Pittsburgh Cancer Institute. Journal for ImmunoTherapy of Cancer, 5(1). doi:10.1186/s40425-017-0279-5Google ScholarGoogle Scholar
  83. Rosenberg, S. A. (2007). Interleukin 2 for patients with renal cancer. Nature Clinical Practice Oncology, 4(9), 497--497. doi:10.1038/ncponc0926Google ScholarGoogle ScholarCross RefCross Ref
  84. Lee, A. J., & Ashkar, A. A. (2018). The Dual Nature of Type I and Type II Interferons. Frontiers in Immunology, 9. doi:10.3389/fimmu.2018.02061Google ScholarGoogle Scholar
  85. Tarhini, A. A., Zahoor, H., Lin, Y., Malhotra, U., Sander, C., Butterfield, L. H., & Kirkwood, J. M. (2015). Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. Journal for ImmunoTherapy of Cancer, 3(1). doi:10.1186/s40425-015-0081-1Google ScholarGoogle Scholar
  86. Kirkwood, J. M. (1985). Comparison of Intramuscular and Intravenous Recombinant Alpha-2 Interferon in Melanoma and Other Cancers. Annals of Internal Medicine, 103(1), 32. doi:10.7326/0003-4819-103-1-32Google ScholarGoogle ScholarCross RefCross Ref
  87. Jones, T. H., Wadler, S., & Hupart, K. H. (1998). Endocrine-mediated mechanisms of fatigue during treatment with interferon-alpha. Seminars in oncology, 25(1 Suppl 1), 54--63.Google ScholarGoogle Scholar
  88. Cao, L., Kulmburg, P., Veelken, H., Mackensen, A., Mézes, B., Lindemann, A., ... Rosenthal, F. M. (2009). Cytokine gene transfer in cancer therapy. Stem Cells, 16(S2), 251--260. doi:10.1002/stem.5530160831Google ScholarGoogle ScholarCross RefCross Ref
  89. Agha-Mohammadi, S., & Lotze, M. T. (2000). Immunomodulation of cancer: Potential use of selectively replicating agents. Journal of Clinical Investigation, 105(9), 1173--1176. doi:10.1172/jci10026Google ScholarGoogle ScholarCross RefCross Ref
  90. Hurford, R. K., Dranoff, G., Mulligan, R. C., & Tepper, R. I. (1995). Gene therapy of metastatic cancer by in vivo retroviral gene targeting. Nature Genetics, 10(4), 430--435. doi:10.1038/ng0895-430Google ScholarGoogle ScholarCross RefCross Ref
  91. Addison, C. L., Braciak, T., Ralston, R., Muller, W. J., Gauldie, J., & Graham, F. L.(1995). Intratumoral injection of an adenovirus expressing interleukin 2 induces regression and immunity in a murine breast cancer model. Proceedings of the National Academy of Sciences, 92(18), 8522--8526. doi:10.1073/pnas.92.18.8522Google ScholarGoogle ScholarCross RefCross Ref
  92. Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer, 12(4), 252--264. doi:10.1038/nrc3239Google ScholarGoogle ScholarCross RefCross Ref
  93. Akinleye, A., & Rasool, Z. (2019). Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. Journal of Hematology & Oncology, 12(1). doi:10.1186/s13045-019-0779-5Google ScholarGoogle Scholar
  94. Vaddepally, R. K., Kharel, P., Pandey, R., Garje, R., & Chandra, A. B. (2020). Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers, 12(3), 738. doi:10.3390/cancers12030738Google ScholarGoogle ScholarCross RefCross Ref
  95. Zou, W., & Chen, L. (2008). Inhibitory B7-family molecules in the tumour microenvironment. Nature Reviews Immunology, 8(6), 467--477. doi:10.1038/nri2326Google ScholarGoogle ScholarCross RefCross Ref
  96. Brunner-Weinzierl, M. C., & Rudd, C. E. (2018). CTLA-4 and PD-1 Control of T-Cell Motility and Migration: Implications for Tumor Immunotherapy. Frontiers in Immunology, 9. doi:10.3389/fimmu.2018.02737Google ScholarGoogle Scholar
  97. Buchbinder, E. I., & Desai, A. (2016). CTLA-4 and PD-1 Pathways. American Journal of Clinical Oncology, 39(1), 98--106. doi:10.1097/coc.0000000000000239Google ScholarGoogle ScholarCross RefCross Ref
  98. Fellner C. (2012). Ipilimumab (yervoy) prolongs survival in advanced melanoma: serious side effects and a hefty price tag may limit its use. P & T: a peer-reviewed journal for formulary management, 37(9), 503--530.Google ScholarGoogle Scholar
  99. Wolchok, J. D., Hodi, F. S., Weber, J. S., Allison, J. P., Urba, W. J., Robert, C., ... Korman, A. J. (2013). Development of ipilimumab: A novel immunotherapeutic approach for the treatment of advanced melanoma. Annals of the New York Academy of Sciences, 1291(1), 1--13. doi:10.1111/nyas.12180Google ScholarGoogle ScholarCross RefCross Ref
  100. Ribas, A., Hamid, O., Daud, A., Hodi, F. S., Wolchok, J. D., Kefford, R., ... Robert, C. (2016). Association of Pembrolizumab With Tumor Response and Survival Among Patients With Advanced Melanoma. Jama, 315(15), 1600. doi:10.1001/jama.2016.4059Google ScholarGoogle ScholarCross RefCross Ref
  101. Lim, S. H., Sun, J., Lee, S., Ahn, J. S., Park, K., & Ahn, M. (2016). Pembrolizumab for the treatment of non-small cell lung cancer. Expert Opinion on Biological Therapy, 16(3), 397--406. doi:10.1517/14712598.2016.1145652Google ScholarGoogle ScholarCross RefCross Ref
  102. Lugowska, I., Teterycz, P., & Rutkowski, P. (2018). Immunotherapy of melanoma. Współczesna Onkologia, 2018(1), 61--67. doi:10.5114/wo.2018.73889Google ScholarGoogle ScholarCross RefCross Ref
  103. Carbone, D. P., Reck, M., Paz-Ares, L., Creelan, B., Horn, L., Steins, M., ... Socinski, M. A. (2017). First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. New England Journal of Medicine, 376(25), 2415--2426. doi:10.1056/nejmoa1613493Google ScholarGoogle ScholarCross RefCross Ref
  104. Mazza, C., Escudier, B., & Albiges, L. (2016). Nivolumab in renal cell carcinoma: Latest evidence and clinical potential. Therapeutic Advances in Medical Oncology, 9(3), 171--181. doi:10.1177/1758834016679942Google ScholarGoogle ScholarCross RefCross Ref
  105. Cemiplimab Approved for Treatment of CSCC. (2018). Cancer discovery, 8(12), OF2. https://doi.org/10.1158/2159-8290.CD-NB2018-140Google ScholarGoogle Scholar
  106. Yang, S., Zhang, Z., & Wang, Q. (2019). Emerging therapies for small cell lung cancer. Journal of Hematology & Oncology, 12(1). doi:10.1186/s13045-019-0736-3Google ScholarGoogle Scholar
  107. Crist, M., & Balar, A. (2017). Atezolizumab in invasive and metastatic urothelial carcinoma. Expert Review of Clinical Pharmacology, 10(12), 1295--1301. doi:10.1080/17512433.2017.1389275Google ScholarGoogle ScholarCross RefCross Ref
  108. D'Angelo, S. P., Russell, J., Lebbe, C., Chmielowski, B., Gambichler, T., Grob, J., ... Kaufman, H. L. (2018). Efficacy and Safety of First-line Avelumab Treatment in Patients With Stage IV Metastatic Merkel Cell Carcinoma. JAMA Oncology, 4(9). doi:10.1001/jamaoncol.2018.0077Google ScholarGoogle Scholar
  109. Gulley, J. L., Rajan, A., Spigel, D. R., Iannotti, N., Chandler, J., Wong, D. J., ... Kelly, K. (2017). Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN Solid Tumor): Dose-expansion cohort of a multicentre, open-label, phase 1b trial. The Lancet Oncology, 18(5), 599--610. doi:10.1016/s1470-2045(17)30240-1Google ScholarGoogle ScholarCross RefCross Ref
  110. Uemura, T., & Hida, T. (2018). Durvalumab showed long and durable effects after chemoradiotherapy in stage III non-small cell lung cancer: Results of the PACIFIC study. Journal of Thoracic Disease, 10(S9). doi:10.21037/jtd.2018.03.180Google ScholarGoogle Scholar
  111. Powles, T., O'donnell, P. H., Massard, C., Arkenau, H., Friedlander, T. W., Hoimes, C. J., ... Hahn, N. M. (2017). Efficacy and Safety of Durvalumab in Locally Advanced or Metastatic Urothelial Carcinoma. JAMA Oncology, 3(9). doi:10.1001/jamaoncol.2017.2411Google ScholarGoogle Scholar

Index Terms

  1. Immunotherapies For Cancer, a Promising Cure?

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ISAIMS '20: Proceedings of the 1st International Symposium on Artificial Intelligence in Medical Sciences
      September 2020
      313 pages
      ISBN:9781450388603
      DOI:10.1145/3429889

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 4 December 2020

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      ISAIMS '20 Paper Acceptance Rate53of112submissions,47%Overall Acceptance Rate53of112submissions,47%
    • Article Metrics

      • Downloads (Last 12 months)1
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader