skip to main content
research-article

VibroMap: Understanding the Spacing of Vibrotactile Actuators across the Body

Published:18 December 2020Publication History
Skip Abstract Section

Abstract

In spite of the great potential of on-body vibrotactile displays for a variety of applications, research lacks an understanding of the spacing between vibrotactile actuators. Through two experiments, we systematically investigate vibrotactile perception on the wrist, forearm, upper arm, back, torso, thigh, and leg, each in transverse and longitudinal body orientation. In the first experiment, we address the maximum distance between vibration motors that still preserves the ability to generate phantom sensations. In the second experiment, we investigate the perceptual accuracy of localizing vibrations in order to establish the minimum distance between vibration motors. Based on the results, we derive VibroMap, a spatial map of the functional range of inter-motor distances across the body. VibroMap supports hardware and interaction designers with design guidelines for constructing body-worn vibrotactile displays.

Skip Supplemental Material Section

Supplemental Material

References

  1. M. Aggravi, G. Salvietti, and D. Prattichizzo. 2016. Haptic wrist guidance using vibrations for Human-Robot teams. In 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). 113--118. https://doi.org/10.1109/ROMAN.2016.7745098Google ScholarGoogle Scholar
  2. D. S. Alles. 1970. Information Transmission by Phantom Sensations. IEEE Transactions on Man-Machine Systems 11, 1 (March 1970), 85--91. https://doi.org/10.1109/TMMS.1970.299967Google ScholarGoogle ScholarCross RefCross Ref
  3. Jessalyn Alvina, Shengdong Zhao, Simon T. Perrault, Maryam Azh, Thijs Roumen, and Morten Fjeld. 2015. OmniVib: Towards Cross-body Spatiotemporal Vibrotactile Notifications for Mobile Phones. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI '15). ACM, New York, NY, USA, 2487--2496. https://doi.org/10.1145/2702123.2702341Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. K. Bark, E. Hyman, F. Tan, E. Cha, S. A. Jax, L. J. Buxbaum, and K. J. Kuchenbecker. 2015. Effects of Vibrotactile Feedback on Human Learning of Arm Motions. IEEE Transactions on Neural Systems and Rehabilitation Engineering 23, 1 (Jan 2015), 51--63. https://doi.org/10.1109/TNSRE.2014.2327229Google ScholarGoogle ScholarCross RefCross Ref
  5. Dominik Bial, Dagmar Kern, Florian Alt, and Albrecht Schmidt. 2011. Enhancing Outdoor Navigation Systems Through Vibrotactile Feedback. In CHI '11 Extended Abstracts on Human Factors in Computing Systems (Vancouver, BC, Canada) (CHI EA '11). ACM, New York, NY, USA, 1273--1278. https://doi.org/10.1145/1979742.1979760Google ScholarGoogle Scholar
  6. Stephen Brewster and Lorna M. Brown. 2004. Tactons: Structured Tactile Messages for Non-Visual Information Display. In Proceedings of the Fifth Conference on Australasian User Interface - Volume 28 (Dunedin, New Zealand) (AUIC '04). Australian Computer Society, Inc., AUS, 15--23.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Jessica R. Cauchard, Janette L. Cheng, Thomas Pietrzak, and James A. Landay. 2016. ActiVibe: Design and Evaluation of Vibrations for Progress Monitoring. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI '16). ACM, New York, NY, USA, 3261--3271. https://doi.org/10.1145/2858036.2858046Google ScholarGoogle Scholar
  8. J. Cha, L. Rahal, and A. El Saddik. 2008. A pilot study on simulating continuous sensation with two vibrating motors. In 2008 IEEE International Workshop on Haptic Audio visual Environments and Games. 143--147. https://doi.org/10.1109/HAVE.2008.4685314Google ScholarGoogle ScholarCross RefCross Ref
  9. Qin Chen, Simon T. Perrault, Quentin Roy, and Lonce Wyse. 2018. Effect of Temporality, Physical Activity and Cognitive Load on Spatiotemporal Vibrotactile Pattern Recognition. In Proceedings of the 2018 International Conference on Advanced Visual Interfaces (Castiglione della Pescaia, Grosseto, Italy) (AVI '18). ACM, New York, NY, USA, Article 25, 9 pages. https://doi.org/10.1145/3206505.3206511Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Roger Cholewiak. 1999. The perception of tactile distance: Influences of body site, space, and time. Perception 28 (02 1999), 851--75. https://doi.org/10.1121/1.2023365Google ScholarGoogle Scholar
  11. Roger Cholewiak, J Christopher Brill, and Anja Schwab. 2004. Vibrotactile localization on the abdomen: Effects of place and space. Perception & psychophysics 66 (09 2004), 970--87. https://doi.org/10.3758/BF03194989Google ScholarGoogle Scholar
  12. Roger W. Cholewiak and Amy A. Collins. 2003. Vibrotactile localization on the arm: Effects of place, space, and age. Perception & Psychophysics 65, 7 (01 Oct 2003), 1058--1077. https://doi.org/10.3758/BF03194834Google ScholarGoogle Scholar
  13. David Dobbelstein, Philipp Henzler, and Enrico Rukzio. 2016. Unconstrained Pedestrian Navigation Based on Vibro-tactile Feedback Around the Wristband of a Smartwatch. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (San Jose, California, USA) (CHI EA '16). ACM, New York, NY, USA, 2439--2445. https://doi.org/10.1145/2851581.2892292Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Don Samitha Elvitigala, Denys J. C. Matthies, Vipula Dissanayaka, Chamod Weerasinghe, and Suranga Nanayakkara. 2019. 2bit-TactileHand: Evaluating Tactons for On-Body Vibrotactile Displays on the Hand and Wrist. In Proceedings of the 10th Augmented Human International Conference 2019 (Reims, France) (AH2019). ACM, New York, NY, USA, Article 3, 8 pages. https://doi.org/10.1145/3311823.3311832Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jan B. F. Van Erp, Hendrik A. H. C. Van Veen, Chris Jansen, and Trevor Dobbins. 2005. Waypoint Navigation with a Vibrotactile Waist Belt. ACM Trans. Appl. Percept. 2, 2 (April 2005), 106--117. https://doi.org/10.1145/1060581.1060585Google ScholarGoogle Scholar
  16. S. Ertan, C. Lee, A. Willets, H. Tan, and A. Pentland. 1998. A wearable haptic navigation guidance system. In Digest of Papers. Second International Symposium on Wearable Computers (Cat. No.98EX215). 164--165. https://doi.org/10.1109/ISWC.1998.729547Google ScholarGoogle ScholarCross RefCross Ref
  17. Gi-Hun Yang, Moon-sub Jin, Yeonsub Jin, and Sungchul Kang. 2010. T-mobile: Vibrotactile display pad with spatial and directional information for hand-held device. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. 5245--5250. https://doi.org/10.1109/IROS.2010.5651759Google ScholarGoogle ScholarCross RefCross Ref
  18. Sebastian Günther, Sven Kratz, Daniel Avrahami, and Max Mühlhäuser. 2018. Exploring Audio, Visual, and Tactile Cues for Synchronous Remote Assistance. In Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference (Corfu, Greece) (PETRA '18). ACM, New York, NY, USA, 339--344. https://doi.org/10.1145/3197768.3201568Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Sebastian Günther, Florian Müller, Markus Funk, Jan Kirchner, Niloofar Dezfuli, and Max Mühlhäuser. 2018. TactileGlove: Assistive Spatial Guidance in 3D Space Through Vibrotactile Navigation. In Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference (Corfu, Greece) (PETRA '18). ACM, New York, NY, USA, 273--280. https://doi.org/10.1145/3197768.3197785Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Aakar Gupta, Antony Irudayaraj, Vimal Chandran, Goutham Palaniappan, Khai N. Truong, and Ravin Balakrishnan. 2016. Haptic Learning of Semaphoric Finger Gestures. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST'16). ACM, New York, NY, USA, 219--226. https://doi.org/10.1145/2984511.2984558Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Chris Harrison, Shilpa Ramamurthy, and Scott E. Hudson. 2012. On-body Interaction: Armed and Dangerous. In Proceedings of the Sixth International Conference on Tangible, Embedded and Embodied Interaction (Kingston, Ontario, Canada) (TEI '12). ACM, New York, NY, USA, 69--76. https://doi.org/10.1145/2148131.2148148Google ScholarGoogle Scholar
  22. Cristy Ho, Hong Z. Tan, and Charles Spence. 2005. Using spatial vibrotactile cues to direct visual attention in driving scenes. Transportation Research Part F: Traffic Psychology and Behaviour 8, 6 (2005), 397 - 412. https://doi.org/10.1016/j.trf.2005.05.002Google ScholarGoogle ScholarCross RefCross Ref
  23. Ali Israr and Ivan Poupyrev. 2011. Tactile Brush: Drawing on Skin with a Tactile Grid Display. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Vancouver, BC, Canada) (CHI '11). ACM, New York, NY, USA, 2019--2028. https://doi.org/10.1145/1978942.1979235Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lynette Jones. 2011. Tactile communication systems: optimizing the display of information. Progress in brain research 192 (12 2011), 113--28. https://doi.org/10.1016/B978-0-444-53355-5.00008-7Google ScholarGoogle ScholarCross RefCross Ref
  25. Idin Karuei, Karon E. MacLean, Zoltan Foley-Fisher, Russell MacKenzie, Sebastian Koch, and Mohamed El-Zohairy. 2011. Detecting Vibrations Across the Body in Mobile Contexts. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Vancouver, BC, Canada) (CHI '11). ACM, New York, NY, USA, 3267--3276. https://doi.org/10.1145/1978942.1979426Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Paul AJ Kolarsick, Maria Ann Kolarsick, and Carolyn Goodwin. 2011. Anatomy and physiology of the skin. Journal of the Dermatology Nurses' Association 3, 4 (2011), 203--213.Google ScholarGoogle ScholarCross RefCross Ref
  27. Yukari Konishi, Nobuhisa Hanamitsu, Kouta Minamizawa, Ayahiko Sato, and Tetsuya Mizuguchi. 2016. Synesthesia Suit: The Full Body Immersive Experience. In ACM SIGGRAPH 2016 Posters (Anaheim, California) (SIGGRAPH'16). ACM, New York, NY, USA, Article 71, 1 pages. https://doi.org/10.1145/2945078.2945149Google ScholarGoogle Scholar
  28. Matti Krüger, Heiko Wersing, and Christiane B. Wiebel-Herboth. 2018. Approach for Enhancing the Perception and Prediction of Traffic Dynamics with a Tactile Interface. In Adjunct Proceedings of the 10th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (Toronto, ON, Canada) (AutomotiveUI '18). ACM, New York, NY, USA, 164--169. https://doi.org/10.1145/3239092.3265961Google ScholarGoogle Scholar
  29. S. J. Lederman and L. A. Jones. 2011. Tactile and Haptic Illusions. IEEE Transactions on Haptics 4, 4 (2011), 273--294.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Jaeyeon Lee, Jaehyun Han, and Geehyuk Lee. 2015. Investigating the Information Transfer Efficiency of a 3x3 Watch-back Tactile Display. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI '15). ACM, New York, NY, USA, 1229--1232. https://doi.org/10.1145/2702123.2702530Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Seungyon "Claire" Lee and Thad Starner. 2010. BuzzWear: Alert Perception in Wearable Tactile Displays on the Wrist. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Atlanta, Georgia, USA) (CHI '10). ACM, New York, NY, USA, 433--442. https://doi.org/10.1145/1753326.1753392Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Marjorie R. Leek. 2001. Adaptive procedures in psychophysical research. Perception & Psychophysics 63, 8 (01 Nov 2001), 1279--1292. https://doi.org/10.3758/BF03194543Google ScholarGoogle Scholar
  33. Ville Lehtinen, Antti Oulasvirta, Antti Salovaara, and Petteri Nurmi. 2012. Dynamic Tactile Guidance for Visual Search Tasks. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (Cambridge, Massachusetts, USA) (UIST'12). ACM, New York, NY, USA, 445--452. https://doi.org/10.1145/2380116.2380173Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Joanne Leong, Patrick Parzer, Florian Perteneder, Teo Babic, Christian Rendl, Anita Vogl, Hubert Egger, Alex Olwal, and Michael Haller. 2016. proCover: Sensory Augmentation of Prosthetic Limbs Using Smart Textile Covers. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST'16). ACM, New York, NY, USA, 335--346. https://doi.org/10.1145/2984511.2984572Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Yi-Chi Liao, Yi-Ling Chen, Jo-Yu Lo, Rong-Hao Liang, Liwei Chan, and Bing-Yu Chen. 2016. EdgeVib: Effective Alphanumeric Character Output Using a Wrist-Worn Tactile Display. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST'16). ACM, New York, NY, USA, 595--601. https://doi.org/10.1145/2984511.2984522Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Pedro Lopes, Alexandra Ion, Willi Müller, Daniel Hoffmann, Patrik Jonell, and Patrick Baudisch. 2015. Proprioceptive Interaction. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI EA '15). ACM, New York, NY, USA, 175--175. https://doi.org/10.1145/2702613.2732490Google ScholarGoogle Scholar
  37. Granit Luzhnica, Sebastian Stein, Eduardo Veas, Viktoria Pammer, John Williamson, and Roderick Murray Smith. 2017. Personalising Vibrotactile Displays Through Perceptual Sensitivity Adjustment. In Proceedings of the 2017 ACM International Symposium on Wearable Computers (Maui, Hawaii) (ISWC '17). ACM, New York, NY, USA, 66--73. https://doi.org/10.1145/3123021.3123029Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Granit Luzhnica and Eduardo Veas. 2019. Optimising Encoding for Vibrotactile Skin Reading. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI '19). ACM, New York, NY, USA, Article 235, 14 pages. https://doi.org/10.1145/3290605.3300465Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Flavia Mancini, Armando Bauleo, Jonathan Cole, Fausta Lui, Carlo Porro, Patrick Haggard, and Gian Iannetti. 2014. Whole-Body Mapping of Spatial Acuity for Pain and Touch. Annals of Neurology 75 (06 2014). https://doi.org/10.1002/ana.24179Google ScholarGoogle Scholar
  40. Anita Meier, Denys J. C. Matthies, Bodo Urban, and Reto Wettach. 2015. Exploring Vibrotactile Feedback on the Body and Foot for the Purpose of Pedestrian Navigation. In Proceedings of the 2Nd International Workshop on Sensor-based Activity Recognition and Interaction (Rostock, Germany) (iWOAR '15). ACM, New York, NY, USA, Article 11, 11 pages. https://doi.org/10.1145/2790044.2790051Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Scott Novich and David Eagleman. 2015. Using space and time to encode vibrotactile information: toward an estimate of the skin's achievable throughput. Experimental brain research 233 (06 2015). https://doi.org/10.1007/s00221-015-4346-1Google ScholarGoogle Scholar
  42. Gunhyuk Park and Seungmoon Choi. 2018. Tactile Information Transmission by 2D Stationary Phantom Sensations. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI '18). ACM, New York, NY, USA, Article 258, 12 pages. https://doi.org/10.1145/3173574.3173832Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Young-Woo Park, Chang-Young Lim, and Tek-Jin Nam. 2010. CheekTouch: An Affective Interaction Technique While Speaking on the Mobile Phone. In CHI '10 Extended Abstracts on Human Factors in Computing Systems (Atlanta, Georgia, USA) (CHI EA '10). ACM, New York, NY, USA, 3241--3246. https://doi.org/10.1145/1753846.1753965Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. S. M. Petermeijer, J. C. F. de Winter, and K. J. Bengler. 2016. Vibrotactile Displays: A Survey With a View on Highly Automated Driving. IEEE Transactions on Intelligent Transportation Systems 17, 4 (April 2016), 897--907. https://doi.org/10.1109/TITS.2015.2494873Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Max Pfeiffer, Stefan Schneegass, Florian Alt, and Michael Rohs. 2014. Let Me Grab This: A Comparison of EMS and Vibration for Haptic Feedback in Free-hand Interaction. In Proceedings of the 5th Augmented Human International Conference (Kobe, Japan) (AH '14). ACM, New York, NY, USA, Article 48, 8 pages. https://doi.org/10.1145/2582051.2582099Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Charlotte Reed, Hong Tan, Zach Perez, E Wilson, Frederico Severgnini, Jaehong Jung, Juan Martinze, Yang Jiao, Ali Israr, Frances Lau, Keith Klumb, Robert Turcott, and Freddy Abnousi. 2018. A Phonemic-Based Tactile Display for Speech Communication. IEEE transactions on haptics PP (07 2018). https://doi.org/10.1109/TOH.2018.2861010Google ScholarGoogle Scholar
  47. Anke Verena Reinschluessel, Sarah Christin Cebulla, Marc Herrlich, Tanja Döring, and Rainer Malaka. 2018. Vibro-Band: Supporting Needle Placement for Physicians with Vibrations. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI EA'18). ACM, New York, NY, USA, Article LBW039, 6 pages. https://doi.org/10.1145/3170427.3188549Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. D. Ryu, G. Yang, and S. Kang. 2009. T-hive: Vibrotactile interface presenting spatial information on handle surface. In 2009 IEEE International Conference on Robotics and Automation. 683--688. https://doi.org/10.1109/ROBOT.2009.5152740Google ScholarGoogle ScholarCross RefCross Ref
  49. Oliver S. Schneider, Ali Israr, and Karon E. MacLean. 2015. Tactile Animation by Direct Manipulation of Grid Displays. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (Charlotte, NC, USA) (UIST'15). ACM, New York, NY, USA, 21--30. https://doi.org/10.1145/2807442.2807470Google ScholarGoogle Scholar
  50. Christian Schönauer, Kenichiro Fukushi, Alex Olwal, Hannes Kaufmann, and Ramesh Raskar. 2012. Multimodal Motion Guidance: Techniques for Adaptive and Dynamic Feedback. In Proceedings of the 14th ACM International Conference on Multimodal Interaction (Santa Monica, California, USA) (ICMI '12). ACM, New York, NY, USA, 133--140. https://doi.org/10.1145/2388676.2388706Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Christian Schönauer, Kenichiro Fukushi, Alex Olwal, Hannes Kaufmann, and Ramesh Raskar. 2012. Multimodal Motion Guidance: Techniques for Adaptive and Dynamic Feedback. In Proceedings of the 14th ACM International Conference on Multimodal Interaction (Santa Monica, California, USA) (ICMI '12). ACM, New York, NY, USA, 133--140. https://doi.org/10.1145/2388676.2388706Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. S. R. Searle, F. M. Speed, and G. A. Milliken. 1980. Population Marginal Means in the Linear Model: An Alternative to Least Squares Means. The American Statistician 34, 4 (1980), 216--221. https://doi.org/10.1080/00031305.1980.10483031 arXiv:https://www.tandfonline.com/doi/pdf/10.1080/00031305.1980.10483031Google ScholarGoogle ScholarCross RefCross Ref
  53. Caitlyn E. Seim, David Quigley, and Thad E. Starner. 2014. Passive Haptic Learning of Typing Skills Facilitated by Wearable Computers. In CHI '14 Extended Abstracts on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI EA '14). ACM, New York, NY, USA, 2203--2208. https://doi.org/10.1145/2559206.2581329Google ScholarGoogle Scholar
  54. Kannathu Shibin and Asir Samuel. 2013. The Discrimination of Two-point Touch Sense for the Upper Extremity in Indian Adults. International Journal of Health and Rehabilitation Sciences 2 (01 2013), 38--43.Google ScholarGoogle Scholar
  55. Daniel Spelmezan. 2012. An Investigation into the Use of Tactile Instructions in Snowboarding. In Proceedings of the 14th International Conference on Human-computer Interaction with Mobile Devices and Services (San Francisco, California, USA) (MobileHCI '12). ACM, New York, NY, USA, 417--426. https://doi.org/10.1145/2371574.2371639Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Daniel Spelmezan, Mareike Jacobs, Anke Hilgers, and Jan Borchers. 2009. Tactile Motion Instructions for Physical Activities. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Boston, MA, USA) (CHI '09). ACM, New York, NY, USA, 2243--2252. https://doi.org/10.1145/1518701.1519044Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Mayuree Srikulwong and Eamonn O'Neill. 2011. A Comparative Study of Tactile Representation Techniques for Landmarks on a Wearable Device. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Vancouver, BC, Canada) (CHI '11). ACM, New York, NY, USA, 2029--2038. https://doi.org/10.1145/1978942.1979236Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Tim Claudius Stratmann, Andreas Löcken, Uwe Gruenefeld, Wilko Heuten, and Susanne Boll. 2018. Exploring Vibrotactile and Peripheral Cues for Spatial Attention Guidance. In Proceedings of the 7th ACM International Symposium on Pervasive Displays (Munich, Germany) (PerDis '18). ACM, New York, NY, USA, Article 9, 8 pages. https://doi.org/10.1145/3205873.3205874Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Diane Tam, Karon E. MacLean, Joanna McGrenere, and Katherine J. Kuchenbecker. 2013. The Design and Field Observation of a Haptic Notification System for Timing Awareness During Oral Presentations. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Paris, France) (CHI '13). ACM, New York, NY, USA, 1689--1698. https://doi.org/10.1145/2470654.2466223Google ScholarGoogle Scholar
  60. Hong Tan, Rob Gray, and J. Young. 2003. A Haptic Back Display for Attentional and Directional Cueing. Haptics-e 3 (07 2003).Google ScholarGoogle Scholar
  61. P. Vyas, F. Al Taha, J. R. Blum, A. Weill-Duflos, and J. R. Cooperstock. 2020. Ten Little Fingers, Ten Little Toes: Can Toes Match Fingers for Haptic Discrimination? IEEE Transactions on Haptics 13, 1 (2020), 130--136.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Ernst Heinrich Weber and Helen Elizabeth Ross. 1978. The sense of touch. Academic Press for [the] Experimental Psychology Society.Google ScholarGoogle Scholar
  63. Martin Weigel, Tong Lu, Gilles Bailly, Antti Oulasvirta, Carmel Majidi, and Jürgen Steimle. 2015. iSkin: Flexible, Stretchable and Visually Customizable On-Body Touch Sensors for Mobile Computing. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI '15). ACM, New York, NY, USA, 2991--3000. https://doi.org/10.1145/2702123.2702391Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Martin Weigel, Vikram Mehta, and Jürgen Steimle. 2014. More Than Touch: Understanding How People Use Skin As an Input Surface for Mobile Computing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI '14). ACM, New York, NY, USA, 179--188. https://doi.org/10.1145/2556288.2557239Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. S. Weinstein. 1968. Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality. The skin senses. Proceedings of the First International Symposium March, (1968), 195--222.Google ScholarGoogle Scholar
  66. Jacob O. Wobbrock, Leah Findlater, Darren Gergle, and James J. Higgins. 2011. The Aligned Rank Transform for Nonparametric Factorial Analyses Using Only Anova Procedures. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Vancouver, BC, Canada) (CHI '11). ACM, New York, NY, USA, 143--146. https://doi.org/10.1145/1978942.1978963Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. E. Y. Wong, A. Israr, and M. K. O'Malley. 2010. Discrimination of consonant articulation location by tactile stimulation of the forearm. In 2010 IEEE Haptics Symposium. 47--54. https://doi.org/10.1109/HAPTIC.2010.5444681Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Koji Yatani, Nikola Banovic, and Khai Truong. 2012. SpaceSense: Representing Geographical Information to Visually Impaired People Using Spatial Tactile Feedback. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Austin, Texas, USA) (CHI '12). ACM, New York, NY, USA, 415--424. https://doi.org/10.1145/2207676.2207734Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Clint Zeagler. 2017. Where to Wear It: Functional, Technical, and Social Considerations in On-body Location for Wearable Technology 20 Years of Designing for Wearability. In Proceedings of the 2017 ACM International Symposium on Wearable Computers (Maui, Hawaii) (ISWC '17). ACM, New York, NY, USA, 150--157. https://doi.org/10.1145/3123021.3123042Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Siyan Zhao, Ali Israr, Frances Lau, and Freddy Abnousi. 2018. Coding Tactile Symbols for Phonemic Communication. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI '18). ACM, New York, NY, USA, Article 392, 13 pages. https://doi.org/10.1145/3173574.3173966Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. VibroMap: Understanding the Spacing of Vibrotactile Actuators across the Body

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
        Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies  Volume 4, Issue 4
        December 2020
        1356 pages
        EISSN:2474-9567
        DOI:10.1145/3444864
        Issue’s Table of Contents

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 18 December 2020
        Published in imwut Volume 4, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader