skip to main content
10.1145/3433174.3433596acmotherconferencesArticle/Chapter ViewAbstractPublication PagessinConference Proceedingsconference-collections
research-article

Development of the mathematic model of disymmetric bigram cryptosystem based on a parametric solution family of multi-degree system of Diophantine equations✱

Published:01 February 2021Publication History

ABSTRACT

This paper shows the objective necessity of improving the information security systems (ISS) under the development of information and telecommunication technologies. The paper also shows the theorems that describe properties of the parametric solutions of multi-degree systems of Diophantine equations (MSDE) necessary for development of the mathematical models of the information security systems (ISS) based on MSDE solutions. The Frolov’s theorem is generalized, and the author’s theorem is given that allows developing the mathematical model of ISS containing Diophantine difficulties and the author’s mathematical model of alphabetic cryptosystem in the form of tuple.

A new approach to the development of dissymmetric bigram cryptosystem (DBC) is proposed based on two-parameter and three-parameter solutions, it generalizes the principle of building the public key cryptosystems. It is proposed to implement direct and inverse transformations based on the parametric solution, previously divided into two parts: one part - for direct transformation, and the other part - for inverse transformation. A new concept of equivalence of the ordered sets of numbers or parameters of given dimension and order is introduced. The described mathematical models demonstrate the potential of using Diophantine equations and systems of Diophantine equations for development of ISS with a high degree of reliability.

References

  1. [1] Alferov A. P., Zubov A. Yu., Kuzmin A. S., Cheremushkin A. V. Osnovy kriptografii [Bases of cryptography]. 2nd ed. Moskva, Gelios ARV Publ., 2002. 480 p.Google ScholarGoogle Scholar
  2. [2] Shannon C. Communication theory of secrecy systems // BellSystemTechn. J. 1949, Vol. 28, No. 4, pp. 656–715.Google ScholarGoogle Scholar
  3. [3] Matiyasevich, Yu. V. Desyataya problema Gil’berta. [Hilbert’s tenth problem]. Izdatel’skaya firma “Fiziko-matematicheskaya literature”. VO Nauka, 1993. – 224 p.Google ScholarGoogle Scholar
  4. [4] Osipyan V. O. Different models of information protection system, based on the functional knapsack,2011,https://dl.acm.org/doi/10.1145/2070425.2070461.Google ScholarGoogle Scholar
  5. [5] Osipyan V. O. Modelirovaniye system zashchity informatsii soderzhashchikh diofantovy trudnosti. Razrabotka metodov resheniy mnogostepennykh system diofantovykh uravneniy. Razrabotka nestandartnykh ryukzachnykh kriptosistem: monografiya [Modeling of systems of protection of information containing the Diophantine difficulties. Development of methods for solving multi-stage systems of Diophantine equations. Development of non-standard knapsack cryptosystems]. Lambert Academic Publishing, 2012, 344 p.Google ScholarGoogle Scholar
  6. [6] Osipyan V. O. Mathematical modeling of data protection systems based on Diophantine equations // Caspian journal: management and high technologies, 2018, No. 1 (41), pp. 151–160.Google ScholarGoogle Scholar
  7. [7] Osipyan V.O., Grigoryan E.S. Method of parameterisation of Diophantine equations and mathematical modeling of data protection systems based on them // Caspian journal: management and high technologies. 2019. № 1 (45), pp. 164-172.Google ScholarGoogle Scholar
  8. [8] Osipyan V. O., Litvinov K. I., Bagdasaryan R. Kh., Lukashchik E. P., Sinitsa S. G., Zhuk A. S. Development of information security system mathematical models by the solutions of the multigrade Diophantine equation systems / SIN ’19 Proceedings of the 12th International Conference on Security of Information and Networks/ ACM Press, 2019, pp.1-8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. [9] Osipyan V. O., Litvinov K. I., Zhuk A. S. Ekologicheskij vestnik nauchnyh centrov chernomorskogo ekonomicheskogo sotrudnichestva t.3, №16. Kubanskij gosudarstvennyj universitet (Krasnodar), 2019, pp.6-15.Google ScholarGoogle Scholar
  10. [10] Osipyan V. O., Sinitsa S. G., Matematicheskie metody i informacionno-tekhnicheskie sredstva: materialy XV Vseros. nauch.-prakt.konf., 21 iyunya 2019 g. Krasnodar: Krasnodarskij universitet MVD Rossii, 2019, pp.140-145.Google ScholarGoogle Scholar
  11. [11] Osipyan V. O., Spirina S. G., Arutyunyan A. S., Podkolzin V. V. Chebyshevskiy sbornik, 2010, vol. 11, № 1, pp. 209–216.Google ScholarGoogle Scholar
  12. [12] Serpinsky W. O reshenii uravneniy v tselykh chislakh [On solving equations in integers]. Moskva, Fizmatlit Publ., 1961, 88 p.Google ScholarGoogle Scholar
  13. [13] Cassels J. W. S. Acta Arithmetica. 1960. Vol. 6. pp. 47–52.Google ScholarGoogle Scholar
  14. [14] Dickson L. E. History of the Theory of Numbers. New York, 1971, vol. 2: Diophantine Analysis.Google ScholarGoogle Scholar
  15. [15] Alpers A., Tijdeman R. Journal of Number Theory, 123(2), pp. 403-412.Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Carmichael R. D. Theory of numbers and Diophantine Analysis. New York, 1959. 118 p.Google ScholarGoogle Scholar
  17. [17] Chernick J. Amer. Monthly, 1937, 5, 44n.10, pp.626-633.Google ScholarGoogle Scholar
  18. [18] Dorwart, H.L. and Brown O. E. Amer. Math. Monthly 44 (1937), pp.613–626.Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Gloden A. Mehgradige Gleichungen. Groningen, 1944. P. 104.Google ScholarGoogle Scholar
  20. [20] Salomaa A. Kriptografiya s otkrytym klyuchom [Cryptography with a public key]. Moskva, Mir Publ., 1995, 318 p.Google ScholarGoogle Scholar
  21. [21] Schneier B. Prikladnaya kriptografiya: Protokoly, algoritmy, iskhodnye teksty na yazyke Si [Applied cryptography: Protocols, algorithms, source texts in C]. Moskva, Triumph Publ., 2002, 816 p.Google ScholarGoogle Scholar
  22. [22] Chor B., Rivest R. IEEE Transactions on Information Theory. 1988. Vol. IT-34. pp. 901–909.Google ScholarGoogle Scholar
  23. [23] Koblitz N. A Course in Number Theory and Cryptography. New York: Springer-Verlag, 1987. 235 p.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. [24] Lenstra A. K., Lenstra H. W., Lovasz L. Mathematische annalen. 1982. Vol. 261. pp. 515–534.Google ScholarGoogle Scholar
  25. [25] Lin C. H., Chang C. C., Lee R. C. T. IEEE Transactions on Computers. 1995, Jan. Vol. 44, issue 1.Google ScholarGoogle Scholar
  26. [26] Merkle R., Hellman M. IEEE Transactions on Information Theory. 1978. Vol. IT-24. pp. 525–530.Google ScholarGoogle Scholar

Index Terms

  1. Development of the mathematic model of disymmetric bigram cryptosystem based on a parametric solution family of multi-degree system of Diophantine equations✱
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Article Metrics

            • Downloads (Last 12 months)4
            • Downloads (Last 6 weeks)0

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format