Cited By
View all- Yan KShu NWu TLiu CYang P(2024)A survey of energy-efficient strategies for federated learning inmobile edge computing移动边缘计算中联邦学习的能效策略综述Frontiers of Information Technology & Electronic Engineering10.1631/FITEE.230018125:5(645-663)Online publication date: 7-Jun-2024
- Shen LYang QCui KZheng YWei XLiu JHan JOkoshi TKo JLiKamWa R(2024)FedConv: A Learning-on-Model Paradigm for Heterogeneous Federated ClientsProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661880(398-411)Online publication date: 3-Jun-2024
- Yuan JWang SLi HXu DLi YXu MLiu XChua TNgo CKa-Wei Lee RKumar RLauw H(2024)Towards Energy-efficient Federated Learning via INT8-based Training on Mobile DSPsProceedings of the ACM Web Conference 202410.1145/3589334.3645341(2786-2794)Online publication date: 13-May-2024
- Show More Cited By