skip to main content
research-article

Harnessing the Computing Continuum for Urgent Science

Published:25 November 2020Publication History
Skip Abstract Section

Abstract

Urgent science describes time-critical, data-driven scientific work-flows that can leverage distributed data sources in a timely way to facilitate important decision making. While our capacity for generating data is expanding dramatically, our ability to manage, analyze, and transform this data into knowledge in a timely manner has not kept pace. This paper explores how the computing continuum, spanning resources at the edges, in the core, and in-between, can be harnessed to support urgent science and discusses associated research challenges. Using an Early Earthquake Warning (EEW) workflow, which combines data streams from geo-distributed seismometers and high-precision GPS stations to detect large ground motions, as a driver, we propose a system stack that can enable the fluid integration of distributed analytics across a dynamic infrastructure spanning the computing continuum.

References

  1. D. Balouek-Thomert, E. G. Renart, A. R. Zamani, A. Simonet, and M. Parashar. Towards a computing continuum: Enabling edge-to-cloud integration for datadriven workflows. The International Journal of High Performance Computing Applications, 33(6):1159--1174, November 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. K. Winter. For Self-Driving Cars, There's Big Meaning Behind One Big Number: 4 Terabytes.https://newsroom.intel.com/editorials/self-driving-carsbig- meaning-behind-one-number-4-terabytes/, 2017.Google ScholarGoogle Scholar
  3. Siew Hoon Leong and Dieter Kranzlmüller. Towards a general definition of urgent computing. Procedia Computer Science, 51:2337 -- 2346, 2015. International Conference On Computational Science, ICCS 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Gordon Gibb, Rupert Nash, Nick Brown, and Bianca Prodan. The technologies required for fusing hpc and real-time data to support urgent computing. In 2019 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC), pages 24--34. IEEE, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  5. R. M. Allen, P. Gasparini, O. Kamigaichi, and M. Böse. The Status of Earthquake Early Warning around the World: An Introductory Overview. Computing in Science Engineering, 80(5):682--693, 2009.Google ScholarGoogle Scholar
  6. K. Doi. The operation and performance of Earthquake Early Warnings by the Japan Meteorological Agency. Soil Dynamics and Earthquake Engineering, 31(2):119--126, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  7. J. M. Espinosa-Aranda, A. Cuellar, A. Garcia, G. Ibarrola, R. Islas, S. Maldonado, and F. H. Rodriguez. Evolution of the Mexican Seismic Alert System (SASMEX). Seismological Research Letters, 80(5):694--706, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  8. Yih min W. and Ta liang T. A virtual sub-network approach to earthquake early warning. Bull. Seism. Soc. Am, pages 2008--2018, 2002.Google ScholarGoogle Scholar
  9. K. Rochford, J. A. Strauss, Q. Kong, and R. M. Allen. Myshake: Using humancentered design methods to promote engagement in a smartphone-based global seismic network. Frontiers in Earth Science, 6:237, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  10. M. D. Kohler, D. E. Smith, J. Andrews, A. I. Chung, R. Hartog, I. Henson, D. D. Given, R. de Groot, and S. Guiwits. Earthquake Early Warning ShakeAlert 2.0: Public Rollout. Seismological Research Letters, 91(3):1763--1775, 04 2020.Google ScholarGoogle Scholar
  11. K. Fauvel, D. Daniel Balouek-Thomert, D. Melgar, P. Silva, A. Simonet, G. Antoniu, A. Costan, V. Masson, M. Parashar, I. Rodero, and A. Termier. A Distributed Multi-Sensor Machine Learning Approach to Earthquake Early Warning. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  12. P. Beckman, J. Dongarra, N. Ferrier, G. Fox, T. Moore, D Reed, and M. Beck. Harnessing the computing continuum for programming our world, 2019.Google ScholarGoogle Scholar
  13. Bin Cheng, Gürkan Solmaz, Flavio Cirillo, Ernö Kovacs, Kazuyuki Terasawa, and Atsushi Kitazawa. Fogflow: Easy programming of iot services over cloud and edges for smart cities. IEEE Internet of Things Journal, 5(2):696--707, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  14. E. G. Renart, D. Balouek-Thomert, and M. Parashar. An edge-based framework for enabling data-driven pipelines for iot systems. In 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 885--894, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  15. Sparsh Mittal. A survey of techniques for approximate computing. ACM Computing Surveys (CSUR), 48(4):1--33, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. R. Zamani, M. Zou, J. Diaz-Montes, I. Petri, O. Rana, and M. Parashar. A computational model to support in-network data analysis in federated ecosystems. Future Generation Computer Systems, 80:342--354, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Chen and X. Ran. Deep learning with edge computing: A review. Proceedings of the IEEE, 107(8):1655--1674, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  18. M. G. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan, and Faraz Hussain. Machine learning at the network edge: A survey, 07 2019.Google ScholarGoogle Scholar
  19. A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and Ng Andrew. Deep learning with cots hpc systems. In International conference on machine learning, pages 1337--1345, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, et al. Large scale distributed deep networks. In Advances in neural information processing systems, pages 1223--1231, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. G. Kamath, P. Agnihotri, M. Valero, K. Sarker, and W. Song. Pushing analytics to the edge. In 2016 IEEE Global Communications Conference (GLOBECOM), pages 1--6, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  22. D. Li, T. Salonidis, N. V. Desai, and M. C. Chuah. Deepcham: Collaborative edge-mediated adaptive deep learning for mobile object recognition. In 2016 IEEE/ACM Symposium on Edge Computing (SEC), pages 64--76, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  23. K. Portelli and C. Anagnostopoulos. Leveraging edge computing through collaborative machine learning. In 2017 5th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), pages 164--169, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  24. X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen. Deepdecision: A mobile deep learning framework for edge video analytics. In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, pages 1421--1429, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  25. Seungyeop Han and al. Mcdnn: An approximation-based execution framework for deep stream processing under resource constraints. In 14th Annual Intl. Conference on Mobile Systems, Applications, and Services, MobiSys '16, page 123--136, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Xu, F. Qian, M. Zhu, F. Huang, S. Pushp, and X. Liu. Deepwear: Adaptive local offoading for on-wearable deep learning. IEEE Transactions on Mobile Computing, 19(2):314--330, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  27. Nisha T. and al. ECO: Harmonizing edge and cloud with ml/dl orchestration. In USENIX Workshop on Hot Topics in Edge Computing (HotEdge 18), Boston, MA, 2018.Google ScholarGoogle Scholar
  28. E. G. Renart, D. Balouek-Thomert, and M. Parashar. Challenges in designing edge-based middlewares for the internet of things: A survey, 2019.Google ScholarGoogle Scholar
  29. N. Jiang, C. Schmidt, and M. Parashar. A decentralized content-based aggregation service for pervasive environments. In 2006 ACS/IEEE International Conference on Pervasive Services, pages 203--212, June 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. E. G. Renart, A. da Silva Veith, D. Balouek-Thomert, M. Dias de Assuncao, L. Lefèvre, and M. Parashar. Distributed Operator Placement for IoT Data Analytics Across Edge and Cloud Resources. In CCGrid 2019 - 19th Annual IEEE/ACM International Symposium in Cluster, Cloud, and Grid Computing, pages 1--10, Larnaca, Cyprus, May 2019.Google ScholarGoogle Scholar
  31. M. Parashar, A. Simonet, I. Rodero, F. Ghahramani, G. Agnew, R. Jantz, and V. Honavar. The Virtual Data Collaboratory: A Regional Cyberinfrastructure for Collaborative Data-Driven Research. Computing in Science Engineering, 22(3):79-- 92, May 2020.Google ScholarGoogle ScholarCross RefCross Ref
  32. J. Diaz-Montes, M. AbdelBaky, M. Zou, and M. Parashar. Cometcloud: Enabling software-defined federations for end-to-end application workflows. IEEE Internet Computing, 19(1):69--73, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. M. AbdelBaky and M. Parashar. A general performance and qos model for distributed software-defined environments. IEEE Transactions on Services Computing, pages 1--1, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  34. F. Tajima and T. Hayashida. Earthquake early warning: what does "seconds before a strong hit" mean" Prog Earth Planet Sci, 5(63), 2018.Google ScholarGoogle Scholar
  35. P. Schäfer and U. Leser. Multivariate time series classification with weasel+ muse. arXiv preprint arXiv:1711.11343, 2017.Google ScholarGoogle Scholar
  36. P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache link: Stream and batch processing in a single engine. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 36(4), 2015.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM SIGMETRICS Performance Evaluation Review
    ACM SIGMETRICS Performance Evaluation Review  Volume 48, Issue 2
    September 2020
    45 pages
    ISSN:0163-5999
    DOI:10.1145/3439602
    Issue’s Table of Contents

    Copyright © 2020 Copyright is held by the owner/author(s)

    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 25 November 2020

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader