skip to main content
10.1145/3441233.3441234acmotherconferencesArticle/Chapter ViewAbstractPublication PagesssipConference Proceedingsconference-collections
research-article

Activity Localization and Tracking in Order Picking Processes using LiDAR Sensors: LiDAR based Activity Tracking

Published: 06 March 2021 Publication History

Abstract

Various sensor technologies can be used for the purpose of indoor localization and activity analysis in industrial environments. Quite often such technologies have relevant drawbacks in human-centered applications. This paper describes the novel approach of a LiDAR-based system solution for localization and identification of manual processes in order picking. The solution based on novel LiDAR sensors and referring data processing offers high accuracy and low impact on the user. The results of an initial test application are compared to previous experiences with an ultrasound-based system.

References

[1]
A. Syska, „Produktionsmanagement: Das A - Z wichtiger Methoden und Konzepte für die Produktion von heute“, Gabler, 2006, p. 99.
[2]
R. Koether, „Distributionslogistik – Effiziente Absicherung der Lieferfähigkeit“, Springer Gabler, 2018, p. 134.
[3]
G. Retscher, M. Kistenich, „Vergleich von Systemen zur Positionsbestimmung und Navigation in Gebäuden“, in zfv – Zeitschrift für Geodäsie, Geoinformation und Landmanagement, Heft 1/2006, Wißner-Verlag, pp. 25-35.
[4]
R. Mautz, „Indoor positioning technologies“, Habilitation, ETH Zürich Research Collection, 2012, pp. 9-10.
[5]
F. Zafari, A. Gkelias, K. K. Leung, „A survey of indoor localization systems and technologies“, in IEEE Communications Surveys & Tutorials, Vol. 21, No. 3., 2019, pp. 2568-2599.
[6]
A.-K. Ahrens, „Bewegungsanalyse im Supermarkt zur Verbesserung von Kommissionierprozessen“, Master Thesis, Otto-von-Guericke University Magdeburg, 2019, pp 45-48.
[7]
S. Giancola, M. Valenti, R. Sala, „A survey on 3D cameras: metrological comparison of time-of-flight, structured-light and active stereoscopy technologies“, Springer, 2018, p. 21.
[8]
A. Ortiz Arteaga, D. Scott, J. Boehm, „Initial investigation of a low-cost automotive LiDAR system“, in The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019, pp. 233-240.
[9]
Livox Technology, „MID-40 lidar sensor – Livox“, URL: https://www.livoxtech.com/mid-40-and-mid100 (accessed 25.02.2020).
[10]
R. Muñoz-Salinas, M. J. Marin-Jimenez, E. Yeguas-Bolivar, R. Medina-Carnicer, „Mapping and localization from planar markers“, Pattern Recognition, 73, 2017, pp. 158–171.
[11]
S. S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, R. Medina-Carnicer, „Generation of fiducial marker dictionaries using mixed integer linear programming“, Pattern Recognition, 51, 2015, pp. 481-491.
[12]
D. Meagher, „Geometric modeling using octree encoding“, Computer Graphics and Image Processing, June 1981, pp. 129-147.
[13]
C.-H. Chen, D. Ramanan, „3D human pose estimation = 2D pose estimation + matching“, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 7035-7043.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
SSIP '20: Proceedings of the 2020 3rd International Conference on Sensors, Signal and Image Processing
October 2020
95 pages
ISBN:9781450388283
DOI:10.1145/3441233
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 March 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. 3D point cloud
  2. LiDAR
  3. ROI regions of interest
  4. activity analysis
  5. indoor localization
  6. order picking
  7. test case

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

SSIP 2020

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 99
    Total Downloads
  • Downloads (Last 12 months)15
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Feb 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media