skip to main content
research-article

Secure Chaff-less Fuzzy Vault for Face Identification Systems

Published: 22 July 2021 Publication History

Abstract

Biometric cryptosystems such as fuzzy vaults represent one of the most popular approaches for secret and biometric template protection. However, they are solely designed for biometric verification, where the user is required to input both identity credentials and biometrics. Several practical questions related to the implementation of biometric cryptosystems remain open, especially in regard to biometric template protection. In this article, we propose a face cryptosystem for identification (FCI) in which only biometric input is needed. Our FCI is composed of a one-to-N search subsystem for template protection and a one-to-one match chaff-less fuzzy vault (CFV) subsystem for secret protection. The first subsystem stores N facial features, which are protected by index-of-maximum (IoM) hashing, enhanced by a fusion module for search accuracy. When a face image of the user is presented, the subsystem returns the top k matching scores and activates the corresponding vaults in the CFV subsystem. Then, one-to-one matching is applied to the k vaults based on the probe face, and the identifier or secret associated with the user is retrieved from the correct matched vault. We demonstrate that coupling between the IoM hashing and the CFV resolves several practical issues related to fuzzy vault schemes. The FCI system is evaluated on three large-scale public unconstrained face datasets (LFW, VGG2, and IJB-C) in terms of its accuracy, computation cost, template protection criteria, and security.

References

[1]
A. K. Jain, K. Nandakumar, and A. Nagar. 2008. Biometric template security. EURASIP J. Adv. Sig. Proc. 113 (2008), 1–17.
[2]
K. Nandakumar and A. K. Jain. 2015. Biometric template protection: Bridging the performance gap between theory and practice. IEEE Sig. Proc. Mag. 32 (2015), 88–100.
[3]
C. Rathgeb and A. Uhl. 2011. A survey on biometric cryptosystems and cancelable biometrics. EURASIP J. Inf. Secur. (2011).
[4]
K. Xi and J. Hu. 2010. Bio-cryptography. In Handbook of Information and Communication Security, P. Stavroulakis, P. Stamp (Eds.). Springer, 129–157.
[5]
A. Juels and M. Wattenberg. 1999. A fuzzy commitment scheme. In Proceedings of the 6th ACM Conference on Computer and Communications Security. ACM, New York, NY, 28–36.
[6]
A. Juels and M. Sudan. 2006. A fuzzy vault scheme. Des. Codes Cryptogr 38 (2006), 237–257.
[7]
Y. Dodis, L. Reyzin, and A. Smith. 2004. Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In Adv. Cryptol. - EUROCRYPT 2004, C. Cachin, J. L. Camenisch (Eds.). Springer Berlin, 523–540.
[8]
K. Xi, J. Hu, and B. V. K. V. Kumar. 2016. FE-SViT: A SViT-based fuzzy extractor framework. ACM Trans. Embed. Comput. Syst 15 (78), 1–24.
[9]
D. Bissessar, C. Adams, and A. Stoianov. 2016. Privacy, security and convenience: biometric encryption for smartphone-based electronic travel documents. In Recent Advances in Computational Intelligence in Defense and Security R. Abielmona, R. Falcon, N. Zincir-Heywood, H. A. Abbass (Eds.). Springer International Publishing, Cham, 339–366.
[10]
A. Cavoukian, M. Chibba, and A. Stoianov. 2012. Advances in biometric encryption: taking privacy by design from academic research to deployment. Rev. Policy Res. 29 (2012), 37–61.
[11]
2018 reform of EU data protection rules. 2018. Retrieved from:
[12]
U. Uludag, S. Pankanti, S. Prabhakar, and A. K. Jain. 2004. Biometric cryptosystems: issues and challenges. Proc. IEEE 92 (2004), 948–960.
[13]
G. Brassard, D. Chaum, and C. Crépeau. 1988. Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37 (1988), 156–189.
[14]
F. Hao, R. Anderson, and J. Daugman. 2006. Combining crypto with biometrics effectively. IEEE Trans. Comput. 55 (2006), 1081–1088. https://doi.org/10.1109/TC.2006.138
[15]
J. Daugman. 2006. Probing the uniqueness and randomness of iriscodes: results from 200 billion iris pair comparisons. Proc. IEEE 94 (2006), 1927–1935. https://doi.org/10.1109/JPROC.2006.884092
[16]
T. A. M. Kevenaar, G. J. Schrijen, M. van der Veen, A. H. M. Akkermans, and F. Zuo. 2005. Face recognition with renewable and privacy preserving binary templates. In Proceedings of the 4th IEEE Workshop on Automatic Identification Advanced Technologies. 21–26.
[17]
M. Osadchy and O. Dunkelman. 2018. It is all in the system's parameters: Privacy and security issues in transforming biometric raw data into binary strings. IEEE Trans. Depend. Secure Comput. 16, 5 (2018).
[18]
M. Lim, A. B. J. Teoh, and J. Kim. 2015. Biometric feature-type transformation: Making templates compatible for secret protection. IEEE Sig. Proc. Mag. 32 (2015), 77–87.
[19]
H. Lu, K. Martin, F. Bui, K. N. Plataniotis, and D. Hatzinakos. 2009. Face recognition with biometric encryption for privacy-enhancing self-exclusion. In Proceedings of the International Conference on Digital Signal Processing (DSP'09). 1–8.
[20]
O. Cole and K. El-Khatib. 2017. A privacy enhanced facial recognition access control system using biometric encryption. In Proceedings of the International Conference on Distributed Computing in Sensor Systems (DCOSS'17). 199–206.
[21]
H. Lee, A. B. J. Teoh, H. G. Jung, and J. Kim. 2012. A secure biometric discretization scheme for face template protection. Fut. Gen. Comput. Syst. 28 (2012), 218–231.
[22]
K. Nandakumar, A. K. Jain, and S. Pankanti. 2007. Fingerprint-based fuzzy vault: Implementation and performance. IEEE Trans. Inf. Forens. Secur. 2 (2007), 744–757.
[23]
P. Li, X. Yang, K. Cao, X. Tao, R. Wang, and J. Tian. 2010. An alignment-free fingerprint cryptosystem based on fuzzy vault scheme. J. Netw. Comput. Appl. 33 (2010), 207–220.
[24]
J. Merkle, H. Ihmor, U. Korte, M. Niesing, and M. Schwaiger. 2010. Performance of the fuzzy vault for multiple fingerprints (extended version). Retrieved from https://arxiv.org/abs/1008.0807v5.
[25]
C. Li and J. Hu. 2016. A security-enhanced alignment-free fuzzy vault-based fingerprint cryptosystem using pair-polar minutiae structures. IEEE Trans. Inf. Forens. Secur. 11 (2016), 543–555.
[26]
W. Yang, J. Hu, and S. Wang. 2014. A Delaunay quadrangle-based fingerprint authentication system with template protection using topology code for local registration and security enhancement. IEEE Trans. Inf. Forens. Secur. 9 (2014), 1179–1192.
[27]
V. Guruswami. 2001. List Decoding of Error-correcting Codes. PhD Thesis. Massachusetts Institute of Technology.
[28]
P. Mihailescu. 2007. The fuzzy vault for fingerprints is vulnerable to brute force attack. Retrieved from http://arxiv.org/abs/0708.2974.
[29]
A. Nagar, K. Nandakumar, and A. K. Jain. 2008. Securing fingerprint template: fuzzy vault with minutiae descriptors. In Proceedings of the 19th International Conference on Pattern Recognition. 1–4.
[30]
Y. Lai, J. Y. Hwang, Z. Jin, S. Kim, S. Cho, and A. B. J. Teoh. 2018. Secure secret sharing enabled b-band mini vaults bio-cryptosystem for vectorial biometrics. IEEE Trans. Dependable Secure Comput. 1–1.
[31]
D. Nyang and K. Lee. 2007. Fuzzy face vault: How to implement fuzzy vault with weighted features. In Universal Acess in Human Computer Interaction. Coping with Diversity, C. Stephanidis (Ed.). Springer Berlin, 491–496.
[32]
Y. Wang and K. N. Plataniotis. 2007. Fuzzy vault for face based cryptographic key generation. In Proceedings of the Biometrics Symposium. 1–6.
[33]
L. Wu and S. Yuan. 2010. A face based fuzzy vault scheme for secure online authentication. In Proceedings of the International Symposium on Data, Privacy, and E-Commerce. 45–49.
[34]
T. Frassen, X. Zhou, and C. Busch. 2008. Fuzzy vault for 3D face recognition systems. In Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing. 1069–1074.
[35]
D.-J. Lee, C.-K. Song, S.-M. Park, and M.-G. Chun. 2013. Real fuzzy vault for protecting face template. J. Korean Inst. Intell. Syst. 23 (2013), 113–119.
[36]
Y.-L. Lai, J. Y. Hwang, Z. Jin, S. Kim, S. Cho, and A. B. J. Teoh. 2019. Symmetric keyring encryption scheme for biometric cryptosystem. Inf. Sci. 502 (2019), 492–509.
[37]
W. J. Scheirer and T. E. Boult. 2007. Cracking fuzzy vaults and biometric encryption. In Proceedings of the Biometrics Symposium. 1–6.
[38]
M. Khalil-Hani, M. N. Marsono, and R. Bakhteri. 2013. Biometric encryption based on a fuzzy vault scheme with a fast chaff generation algorithm. Fut. Gen. Comput. Syst. 29 (2013), 800–810.
[39]
I. De Oliveira Nunes, K. Eldefrawy, and T. Lepoint. 2019. SNUSE: A secure computation approach for large-scale user re-enrollment in biometric authentication systems. Fut. Gen. Comput. Syst. 98 (2019), 259–273.
[40]
Z. Jin, J. Y. Hwang, Y. Lai, S. Kim, and A. B. J. Teoh. 2018. Ranking-based locality sensitive hashing-enabled cancelable biometrics: index-of-max hashing. IEEE Trans. Inf. Forens. Secur. 13 (2018), 393–407.
[41]
F. Schroff, D. Kalenichenko, and J. Philbin. 2015. FaceNet: a unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 815–823.
[42]
J. Deng, J. Guo, N. Xue, and S. Zafeiriou. 2019. Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4690–4699.
[43]
K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. 2016. Joint face detection and alignment using multi-task cascaded convolutional networks. IEEE Sig. Proc. Lett. 23 (2016), 1499–1503.
[44]
Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. 2016. MS-Celeb-1M: A dataset and benchmark for large-scale face recognition. In Proceedings of the European Conference on Computer Vision. 87–102. Springer, Cham.
[45]
C. Rathgeb and A. Uhl. 2011. Statistical attack against iris-biometric fuzzy commitment schemes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop. 23–30.
[46]
H. S. G. Pussewalage, J. Hu, and J. Pieprzyk. 2014. A survey: Error control methods used in bio-cryptography. In Proceedings of the 11th International Conference on Fuzzy Systems and Knowledge Discovery. 956–962.
[47]
G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller. 2008. Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. Technical Report 07-49, October 2007. University of Massachusetts, Amherst, MA.
[48]
Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. 2018. VGGFace2: A dataset for recognising faces across pose and age. In Proceedings of the 13th IEEE International Conference on Automatic Face & Gesture Recognition. 67–74.
[49]
B. Maze, J. Adams, J. A. Duncan, N. Kalka, T. Miller, C. Otto, A. K. Jain, W. T. Niggel, J. Anderson, J. Cheney, and P. Grother. 2018. IARPA Janus benchmark—C: face dataset and protocol. In Proceedings of the IAPR International Conference on Biometrics. 158–165.
[50]
N. A. Macmillan and C. D. Creelman. 2004. Detection Theory: A User's Guide. Psychology Press.
[51]
S. Liao, Zhen Lei, Dong Yi, and S. Z. Li. 2014. A benchmark study of large-scale unconstrained face recognition. In Proceedings of the IEEE International Conference on Biometrics: Theory, Applications, and Systems. 1–8.
[52]
D. Yi, Z. Lei, S. Liao, and S. Z. Li. 2014. Learning face representation from scratch. ArXiv Prepr. ArXiv14117923.
[53]
D. Wang, C. Otto, and A. K. Jain. 2017. Face search at scale. IEEE Trans. Pattern Anal. Mach. Intell. 39 (2017), 1122–1136.
[54]
F. Wang, X. Xiang, J. Cheng, and A. L. Yuille. 2017. NormFace: l2 hypersphere embedding for face verification. In Proceedings of the25th ACM International Multimedia Conference. ACM, New York, NY, 1041–1049.
[55]
L. Li, H. Luo, L. Zhang, Q. Xu, and H. Ning. 2018. TypicFace: dynamic margin cosine loss for deep face recognition. In PRICAI 2018 Trends in Artificial Intelligence, X. Geng, B.-H. Kang (Eds.). Springer International Publishing, 710–718.

Cited By

View all

Index Terms

  1. Secure Chaff-less Fuzzy Vault for Face Identification Systems

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Multimedia Computing, Communications, and Applications
      ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 17, Issue 3
      August 2021
      443 pages
      ISSN:1551-6857
      EISSN:1551-6865
      DOI:10.1145/3476118
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 22 July 2021
      Accepted: 01 December 2020
      Revised: 01 October 2020
      Received: 01 December 2019
      Published in TOMM Volume 17, Issue 3

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Chaff-less fuzzy vault
      2. face identification system
      3. biometric template protection

      Qualifiers

      • Research-article
      • Refereed

      Funding Sources

      • Institute for Information & Communications Technology Promotion(IITP)
      • Korean government (MSIT)
      • Development of Biometrics-based Key Infrastructure Technology for On-line Identification
      • Security Technology for Portal Device to Connect Human-Infrastructure-Service in Highly Trusted Intelligent Information Service

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)72
      • Downloads (Last 6 weeks)6
      Reflects downloads up to 03 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)Deep face template protection in the wildPattern Recognition10.1016/j.patcog.2024.111336162(111336)Online publication date: Jun-2025
      • (2024)Databases in Edge and Fog Environments: A SurveyACM Computing Surveys10.1145/366600156:11(1-40)Online publication date: 8-Jul-2024
      • (2024)Real-time Cyber-Physical Security Solution Leveraging an Integrated Learning-Based ApproachACM Transactions on Sensor Networks10.1145/358200920:2(1-22)Online publication date: 9-Jan-2024
      • (2024)Privacy preserving security using multi‐key homomorphic encryption for face recognitionExpert Systems10.1111/exsy.13645Online publication date: 11-Jun-2024
      • (2024)WiFaKey: Generating Cryptographic Keys From Face in the WildIEEE Transactions on Instrumentation and Measurement10.1109/TIM.2024.348543673(1-16)Online publication date: 2024
      • (2024)Privacy-Preserving Multi-Biometric Indexing Based on Frequent Binary PatternsIEEE Transactions on Information Forensics and Security10.1109/TIFS.2024.338631019(4835-4850)Online publication date: 8-Apr-2024
      • (2024)Scores Tell Everything about Bob: Non-adaptive Face Reconstruction on Face Recognition Systems2024 IEEE Symposium on Security and Privacy (SP)10.1109/SP54263.2024.00161(1684-1702)Online publication date: 19-May-2024
      • (2024)A High-Security-Level Iris Recognition System Based on Multi-Scale Dominating Feature PointsIEEE Signal Processing Letters10.1109/LSP.2024.341151331(1600-1604)Online publication date: 2024
      • (2024)Fuzzy‐Based IoMT System Design ChallengesAdvances in Fuzzy‐Based Internet of Medical Things (IoMT)10.1002/9781394242252.ch2(25-37)Online publication date: 11-Mar-2024
      • (2023)An Efficient Confidence Interval-Based Dual-Key Fuzzy Vault Scheme for Operator Authentication of Autonomous Unmanned Aerial VehiclesApplied Sciences10.3390/app1315889413:15(8894)Online publication date: 2-Aug-2023
      • Show More Cited By

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format.

      HTML Format

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media