skip to main content
10.1145/3442536.3442538acmotherconferencesArticle/Chapter ViewAbstractPublication PagesaicccConference Proceedingsconference-collections
research-article

Designing of Loss Function for 3D Pedestrian Detection using CenterNet

Published: 15 March 2021 Publication History
First page of PDF

References

[1]
Chen, X., Kundu, K., Zhu, Y., Berneshawi, A. G., Ma, H., Fidler, S., & Urtasun, R. (2015). 3d object proposals for accurate object class detection. In Advances in Neural Information Processing Systems (pp. 424-432).
[2]
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016, October). Ssd: Single shot multibox detector. In  European conference on computer vision (pp. 21-37). Springer, Cham.
[3]
Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. In  Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7263-7271).
[4]
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In  Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).
[5]
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587).
[6]
Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448).
[7]
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In  Advances in neural information processing systems (pp. 91-99).
[8]
Law, H., & Deng, J. (2018). Cornernet: Detecting objects as paired keypoints. In  Proceedings of the European Conference on Computer Vision (ECCV) (pp. 734-750).
[9]
Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as points.  arXiv preprint arXiv:1904.07850.
[10]
Yang, B., Luo, W., & Urtasun, R. (2018). Pixor: Real-time 3d object detection from point clouds. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 7652-7660).
[11]
Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 652-660).
[12]
Geiger, A., Lenz, P., & Urtasun, R. (2012, June). Are we ready for autonomous driving? the kitti vision benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 3354-3361). IEEE.
[13]
Liu, Z., Wu, Z., & Tóth, R. (2020). SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 996-997).
[14]
Choi, H. M., Kang, H., & Hyun, Y. (2019, October). Multi-View Reprojection Architecture for Orientation Estimation. In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) (pp. 2357-2366). IEEE.
[15]
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
[16]
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In  Proceedings of the IEEE international conference on computer vision (pp. 2961-2969)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
AICCC '20: Proceedings of the 2020 3rd Artificial Intelligence and Cloud Computing Conference
December 2020
114 pages
ISBN:9781450388832
DOI:10.1145/3442536
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 15 March 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. 3D Object Detection
  2. Deep Learning
  3. Monocular 3D Object Detection
  4. Object Detection
  5. Pedestrian Detection

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

AICCC 2020

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 84
    Total Downloads
  • Downloads (Last 12 months)6
  • Downloads (Last 6 weeks)1
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media