skip to main content
10.1145/3444884.3444898acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbbeConference Proceedingsconference-collections
Article

BIN1 Isoform 1 has Less Function in Promoting the Stability of TAT System in Adult Rat Cardiomyocytes

Published:31 March 2021Publication History

ABSTRACT

The process of heart electrical excitation to contraction is called excitation-contraction coupling, which is important for heart to propel blood out. Transverse-axial-tubule (TAT) system in Ventricular myocyte, including classic transverse tubules (TTs) and axial tubules (ATs), is complex tubular structure formed by invaginations of sarcolemma. During many heart diseases, such as arrhythmia, hypertrophy and heart failure, TAT system become disordered which affecting the efficiency of E-C coupling. In heart cell, membrane shape regulation is important for many cellular functions. According to literature report Bin/Amphyiphysin/Rvs (BAR) domain-containing proteins play important role in membrane remodeling during the basic cell life activities such as endocytosis, cell migration, and endosomal sorting. In striated muscle, BIN1 is assumed to be very important palyer in inducing cytomembrane invagination to form the TAT system. BIN1 mutations and misregulation of splicing cause diseases in skeletal muscle and brain, and cardiac isoform of BIN1 (BIN1+13+17 or cBIN1) is known to organize cardiac TT microdomains, but the role of other BIN1 isoforms in heart remains elusive. We are curious about the role of BIN1 isoform 1 and whether it can maintain or promote TAT system stability in cultured adult myocytes. So we transfected adult rat cardiomyocytes with adenovirus of DsRed-BIN1 isoform 1. The results showed that overexpression of BIN1 isoform 1 didn't show a significant positive effect on maintaining or promoting the stability of TAT system in adult cardiomyocytes

References

  1. Michalak, J. K. M. Calcium_ A Matter of Life or Death. Elsevier Science (2007).Google ScholarGoogle Scholar
  2. Bers, D. M. Cardiac excitation–contraction coupling. Nature 415, 198, doi:10.1038/415198a (2002).Google ScholarGoogle Scholar
  3. Eisner, D. A., Caldwell, J. L., Kistamas, K. & Trafford, A. W. Calcium and Excitation-Contraction Coupling in the Heart. Circ Res 121, 181-195, doi:10.1161/CIRCRESAHA.117.310230 (2017).Google ScholarGoogle Scholar
  4. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4, 517-529, doi:10.1038/nrm1155 (2003).Google ScholarGoogle ScholarCross RefCross Ref
  5. Al-Qusairi, L. & Laporte, J. T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases. Skelet Muscle 1, 26, doi:10.1186/2044-5040-1-26 (2011).Google ScholarGoogle Scholar
  6. Brette, F. & Orchard, C. T-tubule function in mammalian cardiac myocytes. Circ Res 92, 1182-1192, doi:10.1161/01.RES.0000074908.17214.FD (2003).Google ScholarGoogle ScholarCross RefCross Ref
  7. Asghari, P., Schulson, M., Scriven, D. R. L., Martens, G. & Moore, E. D. W. Axial tubules of rat ventricular myocytes form multiple junctions with the sarcoplasmic reticulum. Biophysical journal 96, 4651-4660, doi:10.1016/j.bpj.2009.02.058 (2009).Google ScholarGoogle Scholar
  8. Caanell, C. S. M. B. Examination of the transverse tubular system in living cardiac rat myocytes. Circulation Research (1998).Google ScholarGoogle Scholar
  9. Maio, A. D., Karko, K., Snopko, R. M., Mejía-Alvarez, R. & Franzini-Armstrong, C. T-tubule formation in cardiacmyocytes: two possible mechanisms? Journal of Muscle Research & Cell Motility 28, 231-241 (2007).Google ScholarGoogle ScholarCross RefCross Ref
  10. Franzini-Armstrong, C., . Simultaneous maturation of transverse tubules and sarcoplasmic reticulum during muscle differentiation in the mouse. Developmental Biology 146, 353 (1991).Google ScholarGoogle ScholarCross RefCross Ref
  11. Kawai, M., Hussain, M. & Orchard, C. H. Excitation-contraction coupling in rat ventricular myocytes after formamide-induced detubulation. American Journal of Physiology-Heart and Circulatory Physiology 277, H603-H609, doi:10.1152/ajpheart.1999.277.2.H603 (1999).Google ScholarGoogle ScholarCross RefCross Ref
  12. Tian, Q. Functional and morphological preservation of adult ventricular myocytes in culture by sub-micromolar cytochalasin D supplement. J Mol Cell Cardiol 52, 113-124, doi:10.1016/j.yjmcc.2011.09.001 (2012).Google ScholarGoogle ScholarCross RefCross Ref
  13. Wei, S. T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res 107, 520-531, doi:10.1161/CIRCRESAHA.109.212324 (2010).Google ScholarGoogle ScholarCross RefCross Ref
  14. Wagner, E. Stimulated emission depletion live-cell super-resolution imaging shows proliferative remodeling of T-tubule membrane structures after myocardial infarction. Circ Res 111, 402-414, doi:10.1161/CIRCRESAHA.112.274530 (2012).Google ScholarGoogle ScholarCross RefCross Ref
  15. Lyon, A. R. Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proceedings of the National Academy of Sciences of the United States of America 106, 6854-6859, doi:10.1073/pnas.0809777106 (2009).Google ScholarGoogle ScholarCross RefCross Ref
  16. Sorre, B. Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc Natl Acad Sci U S A 109, 173-178, doi:10.1073/pnas.1103594108 (2012).Google ScholarGoogle ScholarCross RefCross Ref
  17. Mim, C. & Unger, V. M. Membrane curvature and its generation by BAR proteins. Trends Biochem Sci 37, 526-533, doi:10.1016/j.tibs.2012.09.001 (2012).Google ScholarGoogle ScholarCross RefCross Ref
  18. Bhatia, V. K., Hatzakis, N. S. & Stamou, D. A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. Semin Cell Dev Biol 21, 381-390, doi:10.1016/j.semcdb.2009.12.004 (2010).Google ScholarGoogle ScholarCross RefCross Ref
  19. Owen, D. J. Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. The EMBO journal 17, 5273-5285, doi:10.1093/emboj/17.18.5273 (1998).Google ScholarGoogle Scholar
  20. Yoon, Y., Zhang, X. & Cho, W. Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) specifically induces membrane penetration and deformation by Bin/amphiphysin/Rvs (BAR) domains. J Biol Chem 287, 34078-34090, doi:10.1074/jbc.M112.372789 (2012).Google ScholarGoogle Scholar
  21. Grabs, D. The SH3 Domain of Amphiphysin Binds the Proline-rich Domain of Dynamin at a Single Site That Defines a New SH3 Binding Consensus Sequence. Journal of Biological Chemistry 272, 13419-13425, doi:10.1074/jbc.272.20.13419 (1997).Google ScholarGoogle ScholarCross RefCross Ref
  22. Kojima, C. Regulation of Bin1 SH3 domain binding by phosphoinositides. EMBO J 23, 4413-4422, doi:10.1038/sj.emboj.7600442 (2004).Google ScholarGoogle ScholarCross RefCross Ref
  23. Picas, L. BIN1/M-Amphiphysin2 induces clustering of phosphoinositides to recruit its downstream partner dynamin. Nat Commun 5, 5647, doi:10.1038/ncomms6647 (2014).Google ScholarGoogle Scholar
  24. Tingting, W. & Tobias, B. BIN1 membrane curvature sensing and generation show autoinhibition regulated by downstream ligands and PI(4,5)P2. Biochemistry 53, 7297-7309 (2014).Google ScholarGoogle ScholarCross RefCross Ref
  25. Ellis, J. D. Tissue-specific alternative splicing remodels protein-protein interaction networks. Mol Cell 46, 884-892, doi:10.1016/j.molcel.2012.05.037 (2012).Google ScholarGoogle ScholarCross RefCross Ref
  26. Butler, M. H. Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of ranvier in brain and around T tubules in skeletal muscle. The Journal of cell biology 137, 1355-1367 (1997).Google ScholarGoogle Scholar
  27. Lee, E. Amphiphysin 2 (Bin1) and T-Tubule Biogenesis in Muscle. Science 297, 1193, doi:10.1126/science.1071362 (2002).Google ScholarGoogle Scholar
  28. Hong, T. Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med 20, 624-632, doi:10.1038/nm.3543 (2014).Google ScholarGoogle ScholarCross RefCross Ref
  29. Yamada, H. Dynamic interaction of amphiphysin with N-WASP regulates actin assembly. J Biol Chem 284, 34244-34256, doi:10.1074/jbc.M109.064204 (2009).Google ScholarGoogle ScholarCross RefCross Ref
  30. Fu, Y. & Hong, T. BIN1 regulates dynamic t-tubule membrane. Biochim Biophys Acta 1863, 1839-1847, doi:10.1016/j.bbamcr.2015.11.004 (2016).Google ScholarGoogle ScholarCross RefCross Ref
  31. Xu, B. The ESCRT-III pathway facilitates cardiomyocyte release of cBIN1-containing microparticles. PLoS Biol 15, e2002354, doi:10.1371/journal.pbio.2002354 (2017).Google ScholarGoogle Scholar
  32. Hong, T. T. Plasma BIN1 correlates with heart failure and predicts arrhythmia in patients with arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm 9, 961-967, doi:10.1016/j.hrthm.2012.01.024 (2012).Google ScholarGoogle ScholarCross RefCross Ref
  33. Muller, A. J. Targeted Disruption of the Murine Bin1/Amphiphysin II Gene Does Not Disable Endocytosis but Results in Embryonic Cardiomyopathy with Aberrant Myofibril Formation. Molecular and Cellular Biology 23, 4295-4306, doi:10.1128/mcb.23.12.4295-4306.2003 (2003).Google ScholarGoogle Scholar
  34. Tjondrokoesoemo, A. Disrupted membrane structure and intracellular Ca(2)(+) signaling in adult skeletal muscle with acute knockdown of Bin1. PLoS One 6, e25740, doi:10.1371/journal.pone.0025740 (2011).Google ScholarGoogle Scholar
  35. Ge, K. Mechanism for elimination of a tumor suppressor: aberrant splicing of a brain-specific exon causes loss of function of Bin1 in melanoma. Proceedings of the National Academy of Sciences of the United States of America 96, 9689-9694 (1999).Google ScholarGoogle ScholarCross RefCross Ref
  36. Bohm, J. Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy. PLoS Genet 9, e1003430, doi:10.1371/journal.pgen.1003430 (2013).Google ScholarGoogle Scholar
  37. Toussaint, A. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathol 121, 253-266, doi:10.1007/s00401-010-0754-2 (2011).Google ScholarGoogle ScholarCross RefCross Ref
  38. Fugier, C. Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat Med 17, 720-725, doi:10.1038/nm.2374 (2011).Google ScholarGoogle ScholarCross RefCross Ref
  39. Nicot, A. S. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 39, 1134-1139, doi:10.1038/ng2086 (2007).Google ScholarGoogle ScholarCross RefCross Ref
  40. Wu, T., Shi, Z. & Baumgart, T. Mutations in BIN1 associated with centronuclear myopathy disrupt membrane remodeling by affecting protein density and oligomerization. PLoS One 9, e93060, doi:10.1371/journal.pone.0093060 (2014).Google ScholarGoogle Scholar
  41. Royer, B. The myotubularin-amphiphysin 2 complex in membrane tubulation and centronuclear myopathies. EMBO Rep 14, 907-915, doi:10.1038/embor.2013.119 (2013).Google ScholarGoogle ScholarCross RefCross Ref
  42. Prokic, I., Cowling, B. S. & Laporte, J. Amphiphysin 2 (BIN1) in physiology and diseases. J Mol Med (Berl) 92, 453-463, doi:10.1007/s00109-014-1138-1 (2014).Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ICBBE '20: Proceedings of the 2020 7th International Conference on Biomedical and Bioinformatics Engineering
    November 2020
    197 pages
    ISBN:9781450388221
    DOI:10.1145/3444884

    Copyright © 2020 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 31 March 2021

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • Article
    • Research
    • Refereed limited
  • Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)0

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format